Blame SOURCES/gdb-rhbz1964167-fortran-array-slices-at-prompt.patch

405ea9
From FEDORA_PATCHES Mon Sep 17 00:00:00 2001
405ea9
From: Kevin Buettner <kevinb@redhat.com>
405ea9
Date: Mon, 24 May 2021 22:46:21 -0700
405ea9
Subject: gdb-rhbz1964167-fortran-array-slices-at-prompt.patch
405ea9
405ea9
;; [fortran] Backport Andrew Burgess's commit for Fortran array
405ea9
;; slice support
405ea9
405ea9
gdb/fortran: Add support for Fortran array slices at the GDB prompt
405ea9
405ea9
This commit brings array slice support to GDB.
405ea9
405ea9
WARNING: This patch contains a rather big hack which is limited to
405ea9
Fortran arrays, this can be seen in gdbtypes.c and f-lang.c.  More
405ea9
details on this below.
405ea9
405ea9
This patch rewrites two areas of GDB's Fortran support, the code to
405ea9
extract an array slice, and the code to print an array.
405ea9
405ea9
After this commit a user can, from the GDB prompt, ask for a slice of
405ea9
a Fortran array and should get the correct result back.  Slices can
405ea9
(optionally) have the lower bound, upper bound, and a stride
405ea9
specified.  Slices can also have a negative stride.
405ea9
405ea9
Fortran has the concept of repacking array slices.  Within a compiled
405ea9
Fortran program if a user passes a non-contiguous array slice to a
405ea9
function then the compiler may have to repack the slice, this involves
405ea9
copying the elements of the slice to a new area of memory before the
405ea9
call, and copying the elements back to the original array after the
405ea9
call.  Whether repacking occurs will depend on which version of
405ea9
Fortran is being used, and what type of function is being called.
405ea9
405ea9
This commit adds support for both packed, and unpacked array slicing,
405ea9
with the default being unpacked.
405ea9
405ea9
With an unpacked array slice, when the user asks for a slice of an
405ea9
array GDB creates a new type that accurately describes where the
405ea9
elements of the slice can be found within the original array, a
405ea9
value of this type is then returned to the user.  The address of an
405ea9
element within the slice will be equal to the address of an element
405ea9
within the original array.
405ea9
405ea9
A user can choose to select packed array slices instead using:
405ea9
405ea9
  (gdb) set fortran repack-array-slices on|off
405ea9
  (gdb) show fortran repack-array-slices
405ea9
405ea9
With packed array slices GDB creates a new type that reflects how the
405ea9
elements of the slice would look if they were laid out in contiguous
405ea9
memory, allocates a value of this type, and then fetches the elements
405ea9
from the original array and places then into the contents buffer of
405ea9
the new value.
405ea9
405ea9
One benefit of using packed slices over unpacked slices is the memory
405ea9
usage, taking a small slice of N elements from a large array will
405ea9
require (in GDB) N * ELEMENT_SIZE bytes of memory, while an unpacked
405ea9
array will also include all of the "padding" between the
405ea9
non-contiguous elements.  There are new tests added that highlight
405ea9
this difference.
405ea9
405ea9
There is also a new debugging flag added with this commit that
405ea9
introduces these commands:
405ea9
405ea9
  (gdb) set debug fortran-array-slicing on|off
405ea9
  (gdb) show debug fortran-array-slicing
405ea9
405ea9
This prints information about how the array slices are being built.
405ea9
405ea9
As both the repacking, and the array printing requires GDB to walk
405ea9
through a multi-dimensional Fortran array visiting each element, this
405ea9
commit adds the file f-array-walk.h, which introduces some
405ea9
infrastructure to support this process.  This means the array printing
405ea9
code in f-valprint.c is significantly reduced.
405ea9
405ea9
The only slight issue with this commit is the "rather big hack" that I
405ea9
mentioned above.  This hack allows us to handle one specific case,
405ea9
array slices with negative strides.  This is something that I don't
405ea9
believe the current GDB value contents model will allow us to
405ea9
correctly handle, and rather than rewrite the value contents code
405ea9
right now, I'm hoping to slip this hack in as a work around.
405ea9
405ea9
The problem is that, as I see it, the current value contents model
405ea9
assumes that an object base address will be the lowest address within
405ea9
that object, and that the contents of the object start at this base
405ea9
address and occupy the TYPE_LENGTH bytes after that.
405ea9
405ea9
( We do have the embedded_offset, which is used for C++ sub-classes,
405ea9
such that an object can start at some offset from the content buffer,
405ea9
however, the assumption that the object then occupies the next
405ea9
TYPE_LENGTH bytes is still true within GDB. )
405ea9
405ea9
The problem is that Fortran arrays with a negative stride don't follow
405ea9
this pattern.  In this case the base address of the object points to
405ea9
the element with the highest address, the contents of the array then
405ea9
start at some offset _before_ the base address, and proceed for one
405ea9
element _past_ the base address.
405ea9
405ea9
As the stride for such an array would be negative then, in theory the
405ea9
TYPE_LENGTH for this type would also be negative.  However, in many
405ea9
places a value in GDB will degrade to a pointer + length, and the
405ea9
length almost always comes from the TYPE_LENGTH.
405ea9
405ea9
It is my belief that in order to correctly model this case the value
405ea9
content handling of GDB will need to be reworked to split apart the
405ea9
value's content buffer (which is a block of memory with a length), and
405ea9
the object's in memory base address and length, which could be
405ea9
negative.
405ea9
405ea9
Things are further complicated because arrays with negative strides
405ea9
like this are always dynamic types.  When a value has a dynamic type
405ea9
and its base address needs resolving we actually store the address of
405ea9
the object within the resolved dynamic type, not within the value
405ea9
object itself.
405ea9
405ea9
In short I don't currently see an easy path to cleanly support this
405ea9
situation within GDB.  And so I believe that leaves two options,
405ea9
either add a work around, or catch cases where the user tries to make
405ea9
use of a negative stride, or access an array with a negative stride,
405ea9
and throw an error.
405ea9
405ea9
This patch currently goes with adding a work around, which is that
405ea9
when we resolve a dynamic Fortran array type, if the stride is
405ea9
negative, then we adjust the base address to point to the lowest
405ea9
address required by the array.  The printing and slicing code is aware
405ea9
of this adjustment and will correctly slice and print Fortran arrays.
405ea9
405ea9
Where this hack will show through to the user is if they ask for the
405ea9
address of an array in their program with a negative array stride, the
405ea9
address they get from GDB will not match the address that would be
405ea9
computed within the Fortran program.
405ea9
405ea9
gdb/ChangeLog:
405ea9
405ea9
	* Makefile.in (HFILES_NO_SRCDIR): Add f-array-walker.h.
405ea9
	* NEWS: Mention new options.
405ea9
	* f-array-walker.h: New file.
405ea9
	* f-lang.c: Include 'gdbcmd.h' and 'f-array-walker.h'.
405ea9
	(repack_array_slices): New static global.
405ea9
	(show_repack_array_slices): New function.
405ea9
	(fortran_array_slicing_debug): New static global.
405ea9
	(show_fortran_array_slicing_debug): New function.
405ea9
	(value_f90_subarray): Delete.
405ea9
	(skip_undetermined_arglist): Delete.
405ea9
	(class fortran_array_repacker_base_impl): New class.
405ea9
	(class fortran_lazy_array_repacker_impl): New class.
405ea9
	(class fortran_array_repacker_impl): New class.
405ea9
	(fortran_value_subarray): Complete rewrite.
405ea9
	(set_fortran_list): New static global.
405ea9
	(show_fortran_list): Likewise.
405ea9
	(_initialize_f_language): Register new commands.
405ea9
	(fortran_adjust_dynamic_array_base_address_hack): New function.
405ea9
	* f-lang.h (fortran_adjust_dynamic_array_base_address_hack):
405ea9
	Declare.
405ea9
	* f-valprint.c: Include 'f-array-walker.h'.
405ea9
	(class fortran_array_printer_impl): New class.
405ea9
	(f77_print_array_1): Delete.
405ea9
	(f77_print_array): Delete.
405ea9
	(fortran_print_array): New.
405ea9
	(f_value_print_inner): Update to call fortran_print_array.
405ea9
	* gdbtypes.c: Include 'f-lang.h'.
405ea9
	(resolve_dynamic_type_internal): Call
405ea9
	fortran_adjust_dynamic_array_base_address_hack.
405ea9
405ea9
gdb/testsuite/ChangeLog:
405ea9
405ea9
        * gdb.fortran/array-slices-bad.exp: New file.
405ea9
        * gdb.fortran/array-slices-bad.f90: New file.
405ea9
        * gdb.fortran/array-slices-sub-slices.exp: New file.
405ea9
        * gdb.fortran/array-slices-sub-slices.f90: New file.
405ea9
        * gdb.fortran/array-slices.exp: Rewrite tests.
405ea9
        * gdb.fortran/array-slices.f90: Rewrite tests.
405ea9
        * gdb.fortran/vla-sizeof.exp: Correct expected results.
405ea9
405ea9
gdb/doc/ChangeLog:
405ea9
405ea9
        * gdb.texinfo (Debugging Output): Document 'set/show debug
405ea9
        fortran-array-slicing'.
405ea9
        (Special Fortran Commands): Document 'set/show fortran
405ea9
        repack-array-slices'.
405ea9
405ea9
diff --git a/gdb/Makefile.in b/gdb/Makefile.in
405ea9
--- a/gdb/Makefile.in
405ea9
+++ b/gdb/Makefile.in
405ea9
@@ -1268,6 +1268,7 @@ HFILES_NO_SRCDIR = \
405ea9
 	expression.h \
405ea9
 	extension.h \
405ea9
 	extension-priv.h \
405ea9
+	f-array-walker.h \
405ea9
 	f-lang.h \
405ea9
 	fbsd-nat.h \
405ea9
 	fbsd-tdep.h \
405ea9
diff --git a/gdb/NEWS b/gdb/NEWS
405ea9
--- a/gdb/NEWS
405ea9
+++ b/gdb/NEWS
405ea9
@@ -111,6 +111,19 @@ maintenance print core-file-backed-mappings
405ea9
   Prints file-backed mappings loaded from a core file's note section.
405ea9
   Output is expected to be similar to that of "info proc mappings".
405ea9
 
405ea9
+set debug fortran-array-slicing on|off
405ea9
+show debug fortran-array-slicing
405ea9
+  Print debugging when taking slices of Fortran arrays.
405ea9
+
405ea9
+set fortran repack-array-slices on|off
405ea9
+show fortran repack-array-slices
405ea9
+  When taking slices from Fortran arrays and strings, if the slice is
405ea9
+  non-contiguous within the original value then, when this option is
405ea9
+  on, the new value will be repacked into a single contiguous value.
405ea9
+  When this option is off, then the value returned will consist of a
405ea9
+  descriptor that describes the slice within the memory of the
405ea9
+  original parent value.
405ea9
+
405ea9
 * Changed commands
405ea9
 
405ea9
 alias [-a] [--] ALIAS = COMMAND [DEFAULT-ARGS...]
405ea9
diff --git a/gdb/doc/gdb.texinfo b/gdb/doc/gdb.texinfo
405ea9
--- a/gdb/doc/gdb.texinfo
405ea9
+++ b/gdb/doc/gdb.texinfo
405ea9
@@ -16919,6 +16919,29 @@ This command prints the values contained in the Fortran @code{COMMON}
405ea9
 block whose name is @var{common-name}.  With no argument, the names of
405ea9
 all @code{COMMON} blocks visible at the current program location are
405ea9
 printed.
405ea9
+@cindex arrays slices (Fortran)
405ea9
+@kindex set fortran repack-array-slices
405ea9
+@kindex show fortran repack-array-slices
405ea9
+@item set fortran repack-array-slices [on|off]
405ea9
+@item show fortran repack-array-slices
405ea9
+When taking a slice from an array, a Fortran compiler can choose to
405ea9
+either produce an array descriptor that describes the slice in place,
405ea9
+or it may repack the slice, copying the elements of the slice into a
405ea9
+new region of memory.
405ea9
+
405ea9
+When this setting is on, then @value{GDBN} will also repack array
405ea9
+slices in some situations.  When this setting is off, then
405ea9
+@value{GDBN} will create array descriptors for slices that reference
405ea9
+the original data in place.
405ea9
+
405ea9
+@value{GDBN} will never repack an array slice if the data for the
405ea9
+slice is contiguous within the original array.
405ea9
+
405ea9
+@value{GDBN} will always repack string slices if the data for the
405ea9
+slice is non-contiguous within the original string as @value{GDBN}
405ea9
+does not support printing non-contiguous strings.
405ea9
+
405ea9
+The default for this setting is @code{off}.
405ea9
 @end table
405ea9
 
405ea9
 @node Pascal
405ea9
@@ -26507,6 +26530,16 @@ Show the current state of FreeBSD LWP debugging messages.
405ea9
 Turns on or off debugging messages from the FreeBSD native target.
405ea9
 @item show debug fbsd-nat
405ea9
 Show the current state of FreeBSD native target debugging messages.
405ea9
+
405ea9
+@item set debug fortran-array-slicing
405ea9
+@cindex fortran array slicing debugging info
405ea9
+Turns on or off display of @value{GDBN} Fortran array slicing
405ea9
+debugging info.  The default is off.
405ea9
+
405ea9
+@item show debug fortran-array-slicing
405ea9
+Displays the current state of displaying @value{GDBN} Fortran array
405ea9
+slicing debugging info.
405ea9
+
405ea9
 @item set debug frame
405ea9
 @cindex frame debugging info
405ea9
 Turns on or off display of @value{GDBN} frame debugging info.  The
405ea9
diff --git a/gdb/f-array-walker.h b/gdb/f-array-walker.h
405ea9
new file mode 100644
405ea9
--- /dev/null
405ea9
+++ b/gdb/f-array-walker.h
405ea9
@@ -0,0 +1,265 @@
405ea9
+/* Copyright (C) 2020 Free Software Foundation, Inc.
405ea9
+
405ea9
+   This file is part of GDB.
405ea9
+
405ea9
+   This program is free software; you can redistribute it and/or modify
405ea9
+   it under the terms of the GNU General Public License as published by
405ea9
+   the Free Software Foundation; either version 3 of the License, or
405ea9
+   (at your option) any later version.
405ea9
+
405ea9
+   This program is distributed in the hope that it will be useful,
405ea9
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
405ea9
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
405ea9
+   GNU General Public License for more details.
405ea9
+
405ea9
+   You should have received a copy of the GNU General Public License
405ea9
+   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
405ea9
+
405ea9
+/* Support classes to wrap up the process of iterating over a
405ea9
+   multi-dimensional Fortran array.  */
405ea9
+
405ea9
+#ifndef F_ARRAY_WALKER_H
405ea9
+#define F_ARRAY_WALKER_H
405ea9
+
405ea9
+#include "defs.h"
405ea9
+#include "gdbtypes.h"
405ea9
+#include "f-lang.h"
405ea9
+
405ea9
+/* Class for calculating the byte offset for elements within a single
405ea9
+   dimension of a Fortran array.  */
405ea9
+class fortran_array_offset_calculator
405ea9
+{
405ea9
+public:
405ea9
+  /* Create a new offset calculator for TYPE, which is either an array or a
405ea9
+     string.  */
405ea9
+  explicit fortran_array_offset_calculator (struct type *type)
405ea9
+  {
405ea9
+    /* Validate the type.  */
405ea9
+    type = check_typedef (type);
405ea9
+    if (type->code () != TYPE_CODE_ARRAY
405ea9
+	&& (type->code () != TYPE_CODE_STRING))
405ea9
+      error (_("can only compute offsets for arrays and strings"));
405ea9
+
405ea9
+    /* Get the range, and extract the bounds.  */
405ea9
+    struct type *range_type = type->index_type ();
405ea9
+    if (!get_discrete_bounds (range_type, &m_lowerbound, &m_upperbound))
405ea9
+      error ("unable to read array bounds");
405ea9
+
405ea9
+    /* Figure out the stride for this array.  */
405ea9
+    struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (type));
405ea9
+    m_stride = type->index_type ()->bounds ()->bit_stride ();
405ea9
+    if (m_stride == 0)
405ea9
+      m_stride = type_length_units (elt_type);
405ea9
+    else
405ea9
+      {
405ea9
+	struct gdbarch *arch = get_type_arch (elt_type);
405ea9
+	int unit_size = gdbarch_addressable_memory_unit_size (arch);
405ea9
+	m_stride /= (unit_size * 8);
405ea9
+      }
405ea9
+  };
405ea9
+
405ea9
+  /* Get the byte offset for element INDEX within the type we are working
405ea9
+     on.  There is no bounds checking done on INDEX.  If the stride is
405ea9
+     negative then we still assume that the base address (for the array
405ea9
+     object) points to the element with the lowest memory address, we then
405ea9
+     calculate an offset assuming that index 0 will be the element at the
405ea9
+     highest address, index 1 the next highest, and so on.  This is not
405ea9
+     quite how Fortran works in reality; in reality the base address of
405ea9
+     the object would point at the element with the highest address, and
405ea9
+     we would index backwards from there in the "normal" way, however,
405ea9
+     GDB's current value contents model doesn't support having the base
405ea9
+     address be near to the end of the value contents, so we currently
405ea9
+     adjust the base address of Fortran arrays with negative strides so
405ea9
+     their base address points at the lowest memory address.  This code
405ea9
+     here is part of working around this weirdness.  */
405ea9
+  LONGEST index_offset (LONGEST index)
405ea9
+  {
405ea9
+    LONGEST offset;
405ea9
+    if (m_stride < 0)
405ea9
+      offset = std::abs (m_stride) * (m_upperbound - index);
405ea9
+    else
405ea9
+      offset = std::abs (m_stride) * (index - m_lowerbound);
405ea9
+    return offset;
405ea9
+  }
405ea9
+
405ea9
+private:
405ea9
+
405ea9
+  /* The stride for the type we are working with.  */
405ea9
+  LONGEST m_stride;
405ea9
+
405ea9
+  /* The upper bound for the type we are working with.  */
405ea9
+  LONGEST m_upperbound;
405ea9
+
405ea9
+  /* The lower bound for the type we are working with.  */
405ea9
+  LONGEST m_lowerbound;
405ea9
+};
405ea9
+
405ea9
+/* A base class used by fortran_array_walker.  There's no virtual methods
405ea9
+   here, sub-classes should just override the functions they want in order
405ea9
+   to specialise the behaviour to their needs.  The functionality
405ea9
+   provided in these default implementations will visit every array
405ea9
+   element, but do nothing for each element.  */
405ea9
+
405ea9
+struct fortran_array_walker_base_impl
405ea9
+{
405ea9
+  /* Called when iterating between the lower and upper bounds of each
405ea9
+     dimension of the array.  Return true if GDB should continue iterating,
405ea9
+     otherwise, return false.
405ea9
+
405ea9
+     SHOULD_CONTINUE indicates if GDB is going to stop anyway, and should
405ea9
+     be taken into consideration when deciding what to return.  If
405ea9
+     SHOULD_CONTINUE is false then this function must also return false,
405ea9
+     the function is still called though in case extra work needs to be
405ea9
+     done as part of the stopping process.  */
405ea9
+  bool continue_walking (bool should_continue)
405ea9
+  { return should_continue; }
405ea9
+
405ea9
+  /* Called when GDB starts iterating over a dimension of the array.  The
405ea9
+     argument INNER_P is true for the inner most dimension (the dimension
405ea9
+     containing the actual elements of the array), and false for more outer
405ea9
+     dimensions.  For a concrete example of how this function is called
405ea9
+     see the comment on process_element below.  */
405ea9
+  void start_dimension (bool inner_p)
405ea9
+  { /* Nothing.  */ }
405ea9
+
405ea9
+  /* Called when GDB finishes iterating over a dimension of the array.  The
405ea9
+     argument INNER_P is true for the inner most dimension (the dimension
405ea9
+     containing the actual elements of the array), and false for more outer
405ea9
+     dimensions.  LAST_P is true for the last call at a particular
405ea9
+     dimension.  For a concrete example of how this function is called
405ea9
+     see the comment on process_element below.  */
405ea9
+  void finish_dimension (bool inner_p, bool last_p)
405ea9
+  { /* Nothing.  */ }
405ea9
+
405ea9
+  /* Called when processing the inner most dimension of the array, for
405ea9
+     every element in the array.  ELT_TYPE is the type of the element being
405ea9
+     extracted, and ELT_OFF is the offset of the element from the start of
405ea9
+     array being walked, and LAST_P is true only when this is the last
405ea9
+     element that will be processed in this dimension.
405ea9
+
405ea9
+     Given this two dimensional array ((1, 2) (3, 4)), the calls to
405ea9
+     start_dimension, process_element, and finish_dimension look like this:
405ea9
+
405ea9
+     start_dimension (false);
405ea9
+       start_dimension (true);
405ea9
+         process_element (TYPE, OFFSET, false);
405ea9
+         process_element (TYPE, OFFSET, true);
405ea9
+       finish_dimension (true, false);
405ea9
+       start_dimension (true);
405ea9
+         process_element (TYPE, OFFSET, false);
405ea9
+         process_element (TYPE, OFFSET, true);
405ea9
+       finish_dimension (true, true);
405ea9
+     finish_dimension (false, true);  */
405ea9
+  void process_element (struct type *elt_type, LONGEST elt_off, bool last_p)
405ea9
+  { /* Nothing.  */ }
405ea9
+};
405ea9
+
405ea9
+/* A class to wrap up the process of iterating over a multi-dimensional
405ea9
+   Fortran array.  IMPL is used to specialise what happens as we walk over
405ea9
+   the array.  See class FORTRAN_ARRAY_WALKER_BASE_IMPL (above) for the
405ea9
+   methods than can be used to customise the array walk.  */
405ea9
+template<typename Impl>
405ea9
+class fortran_array_walker
405ea9
+{
405ea9
+  /* Ensure that Impl is derived from the required base class.  This just
405ea9
+     ensures that all of the required API methods are available and have a
405ea9
+     sensible default implementation.  */
405ea9
+  gdb_static_assert ((std::is_base_of<fortran_array_walker_base_impl,Impl>::value));
405ea9
+
405ea9
+public:
405ea9
+  /* Create a new array walker.  TYPE is the type of the array being walked
405ea9
+     over, and ADDRESS is the base address for the object of TYPE in
405ea9
+     memory.  All other arguments are forwarded to the constructor of the
405ea9
+     template parameter class IMPL.  */
405ea9
+  template <typename ...Args>
405ea9
+  fortran_array_walker (struct type *type, CORE_ADDR address,
405ea9
+			Args... args)
405ea9
+    : m_type (type),
405ea9
+      m_address (address),
405ea9
+      m_impl (type, address, args...)
405ea9
+  {
405ea9
+    m_ndimensions =  calc_f77_array_dims (m_type);
405ea9
+  }
405ea9
+
405ea9
+  /* Walk the array.  */
405ea9
+  void
405ea9
+  walk ()
405ea9
+  {
405ea9
+    walk_1 (1, m_type, 0, false);
405ea9
+  }
405ea9
+
405ea9
+private:
405ea9
+  /* The core of the array walking algorithm.  NSS is the current
405ea9
+     dimension number being processed, TYPE is the type of this dimension,
405ea9
+     and OFFSET is the offset (in bytes) for the start of this dimension.  */
405ea9
+  void
405ea9
+  walk_1 (int nss, struct type *type, int offset, bool last_p)
405ea9
+  {
405ea9
+    /* Extract the range, and get lower and upper bounds.  */
405ea9
+    struct type *range_type = check_typedef (type)->index_type ();
405ea9
+    LONGEST lowerbound, upperbound;
405ea9
+    if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
405ea9
+      error ("failed to get range bounds");
405ea9
+
405ea9
+    /* CALC is used to calculate the offsets for each element in this
405ea9
+       dimension.  */
405ea9
+    fortran_array_offset_calculator calc (type);
405ea9
+
405ea9
+    m_impl.start_dimension (nss == m_ndimensions);
405ea9
+
405ea9
+    if (nss != m_ndimensions)
405ea9
+      {
405ea9
+	/* For dimensions other than the inner most, walk each element and
405ea9
+	   recurse while peeling off one more dimension of the array.  */
405ea9
+	for (LONGEST i = lowerbound;
405ea9
+	     m_impl.continue_walking (i < upperbound + 1);
405ea9
+	     i++)
405ea9
+	  {
405ea9
+	    /* Use the index and the stride to work out a new offset.  */
405ea9
+	    LONGEST new_offset = offset + calc.index_offset (i);
405ea9
+
405ea9
+	    /* Now print the lower dimension.  */
405ea9
+	    struct type *subarray_type
405ea9
+	      = TYPE_TARGET_TYPE (check_typedef (type));
405ea9
+	    walk_1 (nss + 1, subarray_type, new_offset, (i == upperbound));
405ea9
+	  }
405ea9
+      }
405ea9
+    else
405ea9
+      {
405ea9
+	/* For the inner most dimension of the array, process each element
405ea9
+	   within this dimension.  */
405ea9
+	for (LONGEST i = lowerbound;
405ea9
+	     m_impl.continue_walking (i < upperbound + 1);
405ea9
+	     i++)
405ea9
+	  {
405ea9
+	    LONGEST elt_off = offset + calc.index_offset (i);
405ea9
+
405ea9
+	    struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (type));
405ea9
+	    if (is_dynamic_type (elt_type))
405ea9
+	      {
405ea9
+		CORE_ADDR e_address = m_address + elt_off;
405ea9
+		elt_type = resolve_dynamic_type (elt_type, {}, e_address);
405ea9
+	      }
405ea9
+
405ea9
+	    m_impl.process_element (elt_type, elt_off, (i == upperbound));
405ea9
+	  }
405ea9
+      }
405ea9
+
405ea9
+    m_impl.finish_dimension (nss == m_ndimensions, last_p || nss == 1);
405ea9
+  }
405ea9
+
405ea9
+  /* The array type being processed.  */
405ea9
+  struct type *m_type;
405ea9
+
405ea9
+  /* The address in target memory for the object of M_TYPE being
405ea9
+     processed.  This is required in order to resolve dynamic types.  */
405ea9
+  CORE_ADDR m_address;
405ea9
+
405ea9
+  /* An instance of the template specialisation class.  */
405ea9
+  Impl m_impl;
405ea9
+
405ea9
+  /* The total number of dimensions in M_TYPE.  */
405ea9
+  int m_ndimensions;
405ea9
+};
405ea9
+
405ea9
+#endif /* F_ARRAY_WALKER_H */
405ea9
diff --git a/gdb/f-lang.c b/gdb/f-lang.c
405ea9
--- a/gdb/f-lang.c
405ea9
+++ b/gdb/f-lang.c
405ea9
@@ -36,9 +36,36 @@
405ea9
 #include "c-lang.h"
405ea9
 #include "target-float.h"
405ea9
 #include "gdbarch.h"
405ea9
+#include "gdbcmd.h"
405ea9
+#include "f-array-walker.h"
405ea9
 
405ea9
 #include <math.h>
405ea9
 
405ea9
+/* Whether GDB should repack array slices created by the user.  */
405ea9
+static bool repack_array_slices = false;
405ea9
+
405ea9
+/* Implement 'show fortran repack-array-slices'.  */
405ea9
+static void
405ea9
+show_repack_array_slices (struct ui_file *file, int from_tty,
405ea9
+			  struct cmd_list_element *c, const char *value)
405ea9
+{
405ea9
+  fprintf_filtered (file, _("Repacking of Fortran array slices is %s.\n"),
405ea9
+		    value);
405ea9
+}
405ea9
+
405ea9
+/* Debugging of Fortran's array slicing.  */
405ea9
+static bool fortran_array_slicing_debug = false;
405ea9
+
405ea9
+/* Implement 'show debug fortran-array-slicing'.  */
405ea9
+static void
405ea9
+show_fortran_array_slicing_debug (struct ui_file *file, int from_tty,
405ea9
+				  struct cmd_list_element *c,
405ea9
+				  const char *value)
405ea9
+{
405ea9
+  fprintf_filtered (file, _("Debugging of Fortran array slicing is %s.\n"),
405ea9
+		    value);
405ea9
+}
405ea9
+
405ea9
 /* Local functions */
405ea9
 
405ea9
 /* Return the encoding that should be used for the character type
405ea9
@@ -114,57 +141,6 @@ enum f_primitive_types {
405ea9
   nr_f_primitive_types
405ea9
 };
405ea9
 
405ea9
-/* Called from fortran_value_subarray to take a slice of an array or a
405ea9
-   string.  ARRAY is the array or string to be accessed.  EXP, POS, and
405ea9
-   NOSIDE are as for evaluate_subexp_standard.  Return a value that is a
405ea9
-   slice of the array.  */
405ea9
-
405ea9
-static struct value *
405ea9
-value_f90_subarray (struct value *array,
405ea9
-		    struct expression *exp, int *pos, enum noside noside)
405ea9
-{
405ea9
-  int pc = (*pos) + 1;
405ea9
-  LONGEST low_bound, high_bound, stride;
405ea9
-  struct type *range = check_typedef (value_type (array)->index_type ());
405ea9
-  enum range_flag range_flag
405ea9
-    = (enum range_flag) longest_to_int (exp->elts[pc].longconst);
405ea9
-
405ea9
-  *pos += 3;
405ea9
-
405ea9
-  if (range_flag & RANGE_LOW_BOUND_DEFAULT)
405ea9
-    low_bound = range->bounds ()->low.const_val ();
405ea9
-  else
405ea9
-    low_bound = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
405ea9
-
405ea9
-  if (range_flag & RANGE_HIGH_BOUND_DEFAULT)
405ea9
-    high_bound = range->bounds ()->high.const_val ();
405ea9
-  else
405ea9
-    high_bound = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
405ea9
-
405ea9
-  if (range_flag & RANGE_HAS_STRIDE)
405ea9
-    stride = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
405ea9
-  else
405ea9
-    stride = 1;
405ea9
-
405ea9
-  if (stride != 1)
405ea9
-    error (_("Fortran array strides are not currently supported"));
405ea9
-
405ea9
-  return value_slice (array, low_bound, high_bound - low_bound + 1);
405ea9
-}
405ea9
-
405ea9
-/* Helper for skipping all the arguments in an undetermined argument list.
405ea9
-   This function was designed for use in the OP_F77_UNDETERMINED_ARGLIST
405ea9
-   case of evaluate_subexp_standard as multiple, but not all, code paths
405ea9
-   require a generic skip.  */
405ea9
-
405ea9
-static void
405ea9
-skip_undetermined_arglist (int nargs, struct expression *exp, int *pos,
405ea9
-			   enum noside noside)
405ea9
-{
405ea9
-  for (int i = 0; i < nargs; ++i)
405ea9
-    evaluate_subexp (nullptr, exp, pos, noside);
405ea9
-}
405ea9
-
405ea9
 /* Return the number of dimensions for a Fortran array or string.  */
405ea9
 
405ea9
 int
405ea9
@@ -189,6 +165,145 @@ calc_f77_array_dims (struct type *array_type)
405ea9
   return ndimen;
405ea9
 }
405ea9
 
405ea9
+/* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array
405ea9
+   slices.  This is a base class for two alternative repacking mechanisms,
405ea9
+   one for when repacking from a lazy value, and one for repacking from a
405ea9
+   non-lazy (already loaded) value.  */
405ea9
+class fortran_array_repacker_base_impl
405ea9
+  : public fortran_array_walker_base_impl
405ea9
+{
405ea9
+public:
405ea9
+  /* Constructor, DEST is the value we are repacking into.  */
405ea9
+  fortran_array_repacker_base_impl (struct value *dest)
405ea9
+    : m_dest (dest),
405ea9
+      m_dest_offset (0)
405ea9
+  { /* Nothing.  */ }
405ea9
+
405ea9
+  /* When we start processing the inner most dimension, this is where we
405ea9
+     will be creating values for each element as we load them and then copy
405ea9
+     them into the M_DEST value.  Set a value mark so we can free these
405ea9
+     temporary values.  */
405ea9
+  void start_dimension (bool inner_p)
405ea9
+  {
405ea9
+    if (inner_p)
405ea9
+      {
405ea9
+	gdb_assert (m_mark == nullptr);
405ea9
+	m_mark = value_mark ();
405ea9
+      }
405ea9
+  }
405ea9
+
405ea9
+  /* When we finish processing the inner most dimension free all temporary
405ea9
+     value that were created.  */
405ea9
+  void finish_dimension (bool inner_p, bool last_p)
405ea9
+  {
405ea9
+    if (inner_p)
405ea9
+      {
405ea9
+	gdb_assert (m_mark != nullptr);
405ea9
+	value_free_to_mark (m_mark);
405ea9
+	m_mark = nullptr;
405ea9
+      }
405ea9
+  }
405ea9
+
405ea9
+protected:
405ea9
+  /* Copy the contents of array element ELT into M_DEST at the next
405ea9
+     available offset.  */
405ea9
+  void copy_element_to_dest (struct value *elt)
405ea9
+  {
405ea9
+    value_contents_copy (m_dest, m_dest_offset, elt, 0,
405ea9
+			 TYPE_LENGTH (value_type (elt)));
405ea9
+    m_dest_offset += TYPE_LENGTH (value_type (elt));
405ea9
+  }
405ea9
+
405ea9
+  /* The value being written to.  */
405ea9
+  struct value *m_dest;
405ea9
+
405ea9
+  /* The byte offset in M_DEST at which the next element should be
405ea9
+     written.  */
405ea9
+  LONGEST m_dest_offset;
405ea9
+
405ea9
+  /* Set with a call to VALUE_MARK, and then reset after calling
405ea9
+     VALUE_FREE_TO_MARK.  */
405ea9
+  struct value *m_mark = nullptr;
405ea9
+};
405ea9
+
405ea9
+/* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array
405ea9
+   slices.  This class is specialised for repacking an array slice from a
405ea9
+   lazy array value, as such it does not require the parent array value to
405ea9
+   be loaded into GDB's memory; the parent value could be huge, while the
405ea9
+   slice could be tiny.  */
405ea9
+class fortran_lazy_array_repacker_impl
405ea9
+  : public fortran_array_repacker_base_impl
405ea9
+{
405ea9
+public:
405ea9
+  /* Constructor.  TYPE is the type of the slice being loaded from the
405ea9
+     parent value, so this type will correctly reflect the strides required
405ea9
+     to find all of the elements from the parent value.  ADDRESS is the
405ea9
+     address in target memory of value matching TYPE, and DEST is the value
405ea9
+     we are repacking into.  */
405ea9
+  explicit fortran_lazy_array_repacker_impl (struct type *type,
405ea9
+					     CORE_ADDR address,
405ea9
+					     struct value *dest)
405ea9
+    : fortran_array_repacker_base_impl (dest),
405ea9
+      m_addr (address)
405ea9
+  { /* Nothing.  */ }
405ea9
+
405ea9
+  /* Create a lazy value in target memory representing a single element,
405ea9
+     then load the element into GDB's memory and copy the contents into the
405ea9
+     destination value.  */
405ea9
+  void process_element (struct type *elt_type, LONGEST elt_off, bool last_p)
405ea9
+  {
405ea9
+    copy_element_to_dest (value_at_lazy (elt_type, m_addr + elt_off));
405ea9
+  }
405ea9
+
405ea9
+private:
405ea9
+  /* The address in target memory where the parent value starts.  */
405ea9
+  CORE_ADDR m_addr;
405ea9
+};
405ea9
+
405ea9
+/* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array
405ea9
+   slices.  This class is specialised for repacking an array slice from a
405ea9
+   previously loaded (non-lazy) array value, as such it fetches the
405ea9
+   element values from the contents of the parent value.  */
405ea9
+class fortran_array_repacker_impl
405ea9
+  : public fortran_array_repacker_base_impl
405ea9
+{
405ea9
+public:
405ea9
+  /* Constructor.  TYPE is the type for the array slice within the parent
405ea9
+     value, as such it has stride values as required to find the elements
405ea9
+     within the original parent value.  ADDRESS is the address in target
405ea9
+     memory of the value matching TYPE.  BASE_OFFSET is the offset from
405ea9
+     the start of VAL's content buffer to the start of the object of TYPE,
405ea9
+     VAL is the parent object from which we are loading the value, and
405ea9
+     DEST is the value into which we are repacking.  */
405ea9
+  explicit fortran_array_repacker_impl (struct type *type, CORE_ADDR address,
405ea9
+					LONGEST base_offset,
405ea9
+					struct value *val, struct value *dest)
405ea9
+    : fortran_array_repacker_base_impl (dest),
405ea9
+      m_base_offset (base_offset),
405ea9
+      m_val (val)
405ea9
+  {
405ea9
+    gdb_assert (!value_lazy (val));
405ea9
+  }
405ea9
+
405ea9
+  /* Extract an element of ELT_TYPE at offset (M_BASE_OFFSET + ELT_OFF)
405ea9
+     from the content buffer of M_VAL then copy this extracted value into
405ea9
+     the repacked destination value.  */
405ea9
+  void process_element (struct type *elt_type, LONGEST elt_off, bool last_p)
405ea9
+  {
405ea9
+    struct value *elt
405ea9
+      = value_from_component (m_val, elt_type, (elt_off + m_base_offset));
405ea9
+    copy_element_to_dest (elt);
405ea9
+  }
405ea9
+
405ea9
+private:
405ea9
+  /* The offset into the content buffer of M_VAL to the start of the slice
405ea9
+     being extracted.  */
405ea9
+  LONGEST m_base_offset;
405ea9
+
405ea9
+  /* The parent value from which we are extracting a slice.  */
405ea9
+  struct value *m_val;
405ea9
+};
405ea9
+
405ea9
 /* Called from evaluate_subexp_standard to perform array indexing, and
405ea9
    sub-range extraction, for Fortran.  As well as arrays this function
405ea9
    also handles strings as they can be treated like arrays of characters.
405ea9
@@ -200,51 +315,394 @@ static struct value *
405ea9
 fortran_value_subarray (struct value *array, struct expression *exp,
405ea9
 			int *pos, int nargs, enum noside noside)
405ea9
 {
405ea9
-  if (exp->elts[*pos].opcode == OP_RANGE)
405ea9
-    return value_f90_subarray (array, exp, pos, noside);
405ea9
-
405ea9
-  if (noside == EVAL_SKIP)
405ea9
+  type *original_array_type = check_typedef (value_type (array));
405ea9
+  bool is_string_p = original_array_type->code () == TYPE_CODE_STRING;
405ea9
+
405ea9
+  /* Perform checks for ARRAY not being available.  The somewhat overly
405ea9
+     complex logic here is just to keep backward compatibility with the
405ea9
+     errors that we used to get before FORTRAN_VALUE_SUBARRAY was
405ea9
+     rewritten.  Maybe a future task would streamline the error messages we
405ea9
+     get here, and update all the expected test results.  */
405ea9
+  if (exp->elts[*pos].opcode != OP_RANGE)
405ea9
     {
405ea9
-      skip_undetermined_arglist (nargs, exp, pos, noside);
405ea9
-      /* Return the dummy value with the correct type.  */
405ea9
-      return array;
405ea9
+      if (type_not_associated (original_array_type))
405ea9
+	error (_("no such vector element (vector not associated)"));
405ea9
+      else if (type_not_allocated (original_array_type))
405ea9
+	error (_("no such vector element (vector not allocated)"));
405ea9
+    }
405ea9
+  else
405ea9
+    {
405ea9
+      if (type_not_associated (original_array_type))
405ea9
+	error (_("array not associated"));
405ea9
+      else if (type_not_allocated (original_array_type))
405ea9
+	error (_("array not allocated"));
405ea9
     }
405ea9
 
405ea9
-  LONGEST subscript_array[MAX_FORTRAN_DIMS];
405ea9
-  int ndimensions = 1;
405ea9
-  struct type *type = check_typedef (value_type (array));
405ea9
+  /* First check that the number of dimensions in the type we are slicing
405ea9
+     matches the number of arguments we were passed.  */
405ea9
+  int ndimensions = calc_f77_array_dims (original_array_type);
405ea9
+  if (nargs != ndimensions)
405ea9
+    error (_("Wrong number of subscripts"));
405ea9
 
405ea9
-  if (nargs > MAX_FORTRAN_DIMS)
405ea9
-    error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
405ea9
+  /* This will be initialised below with the type of the elements held in
405ea9
+     ARRAY.  */
405ea9
+  struct type *inner_element_type;
405ea9
 
405ea9
-  ndimensions = calc_f77_array_dims (type);
405ea9
+  /* Extract the types of each array dimension from the original array
405ea9
+     type.  We need these available so we can fill in the default upper and
405ea9
+     lower bounds if the user requested slice doesn't provide that
405ea9
+     information.  Additionally unpacking the dimensions like this gives us
405ea9
+     the inner element type.  */
405ea9
+  std::vector<struct type *> dim_types;
405ea9
+  {
405ea9
+    dim_types.reserve (ndimensions);
405ea9
+    struct type *type = original_array_type;
405ea9
+    for (int i = 0; i < ndimensions; ++i)
405ea9
+      {
405ea9
+	dim_types.push_back (type);
405ea9
+	type = TYPE_TARGET_TYPE (type);
405ea9
+      }
405ea9
+    /* TYPE is now the inner element type of the array, we start the new
405ea9
+       array slice off as this type, then as we process the requested slice
405ea9
+       (from the user) we wrap new types around this to build up the final
405ea9
+       slice type.  */
405ea9
+    inner_element_type = type;
405ea9
+  }
405ea9
 
405ea9
-  if (nargs != ndimensions)
405ea9
-    error (_("Wrong number of subscripts"));
405ea9
+  /* As we analyse the new slice type we need to understand if the data
405ea9
+     being referenced is contiguous.  Do decide this we must track the size
405ea9
+     of an element at each dimension of the new slice array.  Initially the
405ea9
+     elements of the inner most dimension of the array are the same inner
405ea9
+     most elements as the original ARRAY.  */
405ea9
+  LONGEST slice_element_size = TYPE_LENGTH (inner_element_type);
405ea9
+
405ea9
+  /* Start off assuming all data is contiguous, this will be set to false
405ea9
+     if access to any dimension results in non-contiguous data.  */
405ea9
+  bool is_all_contiguous = true;
405ea9
+
405ea9
+  /* The TOTAL_OFFSET is the distance in bytes from the start of the
405ea9
+     original ARRAY to the start of the new slice.  This is calculated as
405ea9
+     we process the information from the user.  */
405ea9
+  LONGEST total_offset = 0;
405ea9
+
405ea9
+  /* A structure representing information about each dimension of the
405ea9
+     resulting slice.  */
405ea9
+  struct slice_dim
405ea9
+  {
405ea9
+    /* Constructor.  */
405ea9
+    slice_dim (LONGEST l, LONGEST h, LONGEST s, struct type *idx)
405ea9
+      : low (l),
405ea9
+	high (h),
405ea9
+	stride (s),
405ea9
+	index (idx)
405ea9
+    { /* Nothing.  */ }
405ea9
+
405ea9
+    /* The low bound for this dimension of the slice.  */
405ea9
+    LONGEST low;
405ea9
+
405ea9
+    /* The high bound for this dimension of the slice.  */
405ea9
+    LONGEST high;
405ea9
+
405ea9
+    /* The byte stride for this dimension of the slice.  */
405ea9
+    LONGEST stride;
405ea9
+
405ea9
+    struct type *index;
405ea9
+  };
405ea9
+
405ea9
+  /* The dimensions of the resulting slice.  */
405ea9
+  std::vector<slice_dim> slice_dims;
405ea9
+
405ea9
+  /* Process the incoming arguments.   These arguments are in the reverse
405ea9
+     order to the array dimensions, that is the first argument refers to
405ea9
+     the last array dimension.  */
405ea9
+  if (fortran_array_slicing_debug)
405ea9
+    debug_printf ("Processing array access:\n");
405ea9
+  for (int i = 0; i < nargs; ++i)
405ea9
+    {
405ea9
+      /* For each dimension of the array the user will have either provided
405ea9
+	 a ranged access with optional lower bound, upper bound, and
405ea9
+	 stride, or the user will have supplied a single index.  */
405ea9
+      struct type *dim_type = dim_types[ndimensions - (i + 1)];
405ea9
+      if (exp->elts[*pos].opcode == OP_RANGE)
405ea9
+	{
405ea9
+	  int pc = (*pos) + 1;
405ea9
+	  enum range_flag range_flag = (enum range_flag) exp->elts[pc].longconst;
405ea9
+	  *pos += 3;
405ea9
+
405ea9
+	  LONGEST low, high, stride;
405ea9
+	  low = high = stride = 0;
405ea9
+
405ea9
+	  if ((range_flag & RANGE_LOW_BOUND_DEFAULT) == 0)
405ea9
+	    low = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
405ea9
+	  else
405ea9
+	    low = f77_get_lowerbound (dim_type);
405ea9
+	  if ((range_flag & RANGE_HIGH_BOUND_DEFAULT) == 0)
405ea9
+	    high = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
405ea9
+	  else
405ea9
+	    high = f77_get_upperbound (dim_type);
405ea9
+	  if ((range_flag & RANGE_HAS_STRIDE) == RANGE_HAS_STRIDE)
405ea9
+	    stride = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
405ea9
+	  else
405ea9
+	    stride = 1;
405ea9
+
405ea9
+	  if (stride == 0)
405ea9
+	    error (_("stride must not be 0"));
405ea9
+
405ea9
+	  /* Get information about this dimension in the original ARRAY.  */
405ea9
+	  struct type *target_type = TYPE_TARGET_TYPE (dim_type);
405ea9
+	  struct type *index_type = dim_type->index_type ();
405ea9
+	  LONGEST lb = f77_get_lowerbound (dim_type);
405ea9
+	  LONGEST ub = f77_get_upperbound (dim_type);
405ea9
+	  LONGEST sd = index_type->bit_stride ();
405ea9
+	  if (sd == 0)
405ea9
+	    sd = TYPE_LENGTH (target_type) * 8;
405ea9
+
405ea9
+	  if (fortran_array_slicing_debug)
405ea9
+	    {
405ea9
+	      debug_printf ("|-> Range access\n");
405ea9
+	      std::string str = type_to_string (dim_type);
405ea9
+	      debug_printf ("|   |-> Type: %s\n", str.c_str ());
405ea9
+	      debug_printf ("|   |-> Array:\n");
405ea9
+	      debug_printf ("|   |   |-> Low bound: %ld\n", lb);
405ea9
+	      debug_printf ("|   |   |-> High bound: %ld\n", ub);
405ea9
+	      debug_printf ("|   |   |-> Bit stride: %ld\n", sd);
405ea9
+	      debug_printf ("|   |   |-> Byte stride: %ld\n", sd / 8);
405ea9
+	      debug_printf ("|   |   |-> Type size: %ld\n",
405ea9
+			    TYPE_LENGTH (dim_type));
405ea9
+	      debug_printf ("|   |   '-> Target type size: %ld\n",
405ea9
+			    TYPE_LENGTH (target_type));
405ea9
+	      debug_printf ("|   |-> Accessing:\n");
405ea9
+	      debug_printf ("|   |   |-> Low bound: %ld\n",
405ea9
+			    low);
405ea9
+	      debug_printf ("|   |   |-> High bound: %ld\n",
405ea9
+			    high);
405ea9
+	      debug_printf ("|   |   '-> Element stride: %ld\n",
405ea9
+			    stride);
405ea9
+	    }
405ea9
+
405ea9
+	  /* Check the user hasn't asked for something invalid.  */
405ea9
+	  if (high > ub || low < lb)
405ea9
+	    error (_("array subscript out of bounds"));
405ea9
+
405ea9
+	  /* Calculate what this dimension of the new slice array will look
405ea9
+	     like.  OFFSET is the byte offset from the start of the
405ea9
+	     previous (more outer) dimension to the start of this
405ea9
+	     dimension.  E_COUNT is the number of elements in this
405ea9
+	     dimension.  REMAINDER is the number of elements remaining
405ea9
+	     between the last included element and the upper bound.  For
405ea9
+	     example an access '1:6:2' will include elements 1, 3, 5 and
405ea9
+	     have a remainder of 1 (element #6).  */
405ea9
+	  LONGEST lowest = std::min (low, high);
405ea9
+	  LONGEST offset = (sd / 8) * (lowest - lb);
405ea9
+	  LONGEST e_count = std::abs (high - low) + 1;
405ea9
+	  e_count = (e_count + (std::abs (stride) - 1)) / std::abs (stride);
405ea9
+	  LONGEST new_low = 1;
405ea9
+	  LONGEST new_high = new_low + e_count - 1;
405ea9
+	  LONGEST new_stride = (sd * stride) / 8;
405ea9
+	  LONGEST last_elem = low + ((e_count - 1) * stride);
405ea9
+	  LONGEST remainder = high - last_elem;
405ea9
+	  if (low > high)
405ea9
+	    {
405ea9
+	      offset += std::abs (remainder) * TYPE_LENGTH (target_type);
405ea9
+	      if (stride > 0)
405ea9
+		error (_("incorrect stride and boundary combination"));
405ea9
+	    }
405ea9
+	  else if (stride < 0)
405ea9
+	    error (_("incorrect stride and boundary combination"));
405ea9
+
405ea9
+	  /* Is the data within this dimension contiguous?  It is if the
405ea9
+	     newly computed stride is the same size as a single element of
405ea9
+	     this dimension.  */
405ea9
+	  bool is_dim_contiguous = (new_stride == slice_element_size);
405ea9
+	  is_all_contiguous &= is_dim_contiguous;
405ea9
+
405ea9
+	  if (fortran_array_slicing_debug)
405ea9
+	    {
405ea9
+	      debug_printf ("|   '-> Results:\n");
405ea9
+	      debug_printf ("|       |-> Offset = %ld\n", offset);
405ea9
+	      debug_printf ("|       |-> Elements = %ld\n", e_count);
405ea9
+	      debug_printf ("|       |-> Low bound = %ld\n", new_low);
405ea9
+	      debug_printf ("|       |-> High bound = %ld\n", new_high);
405ea9
+	      debug_printf ("|       |-> Byte stride = %ld\n", new_stride);
405ea9
+	      debug_printf ("|       |-> Last element = %ld\n", last_elem);
405ea9
+	      debug_printf ("|       |-> Remainder = %ld\n", remainder);
405ea9
+	      debug_printf ("|       '-> Contiguous = %s\n",
405ea9
+			    (is_dim_contiguous ? "Yes" : "No"));
405ea9
+	    }
405ea9
+
405ea9
+	  /* Figure out how big (in bytes) an element of this dimension of
405ea9
+	     the new array slice will be.  */
405ea9
+	  slice_element_size = std::abs (new_stride * e_count);
405ea9
+
405ea9
+	  slice_dims.emplace_back (new_low, new_high, new_stride,
405ea9
+				   index_type);
405ea9
+
405ea9
+	  /* Update the total offset.  */
405ea9
+	  total_offset += offset;
405ea9
+	}
405ea9
+      else
405ea9
+	{
405ea9
+	  /* There is a single index for this dimension.  */
405ea9
+	  LONGEST index
405ea9
+	    = value_as_long (evaluate_subexp_with_coercion (exp, pos, noside));
405ea9
+
405ea9
+	  /* Get information about this dimension in the original ARRAY.  */
405ea9
+	  struct type *target_type = TYPE_TARGET_TYPE (dim_type);
405ea9
+	  struct type *index_type = dim_type->index_type ();
405ea9
+	  LONGEST lb = f77_get_lowerbound (dim_type);
405ea9
+	  LONGEST ub = f77_get_upperbound (dim_type);
405ea9
+	  LONGEST sd = index_type->bit_stride () / 8;
405ea9
+	  if (sd == 0)
405ea9
+	    sd = TYPE_LENGTH (target_type);
405ea9
+
405ea9
+	  if (fortran_array_slicing_debug)
405ea9
+	    {
405ea9
+	      debug_printf ("|-> Index access\n");
405ea9
+	      std::string str = type_to_string (dim_type);
405ea9
+	      debug_printf ("|   |-> Type: %s\n", str.c_str ());
405ea9
+	      debug_printf ("|   |-> Array:\n");
405ea9
+	      debug_printf ("|   |   |-> Low bound: %ld\n", lb);
405ea9
+	      debug_printf ("|   |   |-> High bound: %ld\n", ub);
405ea9
+	      debug_printf ("|   |   |-> Byte stride: %ld\n", sd);
405ea9
+	      debug_printf ("|   |   |-> Type size: %ld\n", TYPE_LENGTH (dim_type));
405ea9
+	      debug_printf ("|   |   '-> Target type size: %ld\n",
405ea9
+			    TYPE_LENGTH (target_type));
405ea9
+	      debug_printf ("|   '-> Accessing:\n");
405ea9
+	      debug_printf ("|       '-> Index: %ld\n", index);
405ea9
+	    }
405ea9
+
405ea9
+	  /* If the array has actual content then check the index is in
405ea9
+	     bounds.  An array without content (an unbound array) doesn't
405ea9
+	     have a known upper bound, so don't error check in that
405ea9
+	     situation.  */
405ea9
+	  if (index < lb
405ea9
+	      || (dim_type->index_type ()->bounds ()->high.kind () != PROP_UNDEFINED
405ea9
+		  && index > ub)
405ea9
+	      || (VALUE_LVAL (array) != lval_memory
405ea9
+		  && dim_type->index_type ()->bounds ()->high.kind () == PROP_UNDEFINED))
405ea9
+	    {
405ea9
+	      if (type_not_associated (dim_type))
405ea9
+		error (_("no such vector element (vector not associated)"));
405ea9
+	      else if (type_not_allocated (dim_type))
405ea9
+		error (_("no such vector element (vector not allocated)"));
405ea9
+	      else
405ea9
+		error (_("no such vector element"));
405ea9
+	    }
405ea9
 
405ea9
-  gdb_assert (nargs > 0);
405ea9
+	  /* Calculate using the type stride, not the target type size.  */
405ea9
+	  LONGEST offset = sd * (index - lb);
405ea9
+	  total_offset += offset;
405ea9
+	}
405ea9
+    }
405ea9
 
405ea9
-  /* Now that we know we have a legal array subscript expression let us
405ea9
-     actually find out where this element exists in the array.  */
405ea9
+  if (noside == EVAL_SKIP)
405ea9
+    return array;
405ea9
 
405ea9
-  /* Take array indices left to right.  */
405ea9
-  for (int i = 0; i < nargs; i++)
405ea9
+  /* Build a type that represents the new array slice in the target memory
405ea9
+     of the original ARRAY, this type makes use of strides to correctly
405ea9
+     find only those elements that are part of the new slice.  */
405ea9
+  struct type *array_slice_type = inner_element_type;
405ea9
+  for (const auto &d : slice_dims)
405ea9
     {
405ea9
-      /* Evaluate each subscript; it must be a legal integer in F77.  */
405ea9
-      value *arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
405ea9
+      /* Create the range.  */
405ea9
+      dynamic_prop p_low, p_high, p_stride;
405ea9
+
405ea9
+      p_low.set_const_val (d.low);
405ea9
+      p_high.set_const_val (d.high);
405ea9
+      p_stride.set_const_val (d.stride);
405ea9
+
405ea9
+      struct type *new_range
405ea9
+	= create_range_type_with_stride ((struct type *) NULL,
405ea9
+					 TYPE_TARGET_TYPE (d.index),
405ea9
+					 &p_low, &p_high, 0, &p_stride,
405ea9
+					 true);
405ea9
+      array_slice_type
405ea9
+	= create_array_type (nullptr, array_slice_type, new_range);
405ea9
+    }
405ea9
 
405ea9
-      /* Fill in the subscript array.  */
405ea9
-      subscript_array[i] = value_as_long (arg2);
405ea9
+  if (fortran_array_slicing_debug)
405ea9
+    {
405ea9
+      debug_printf ("'-> Final result:\n");
405ea9
+      debug_printf ("    |-> Type: %s\n",
405ea9
+		    type_to_string (array_slice_type).c_str ());
405ea9
+      debug_printf ("    |-> Total offset: %ld\n", total_offset);
405ea9
+      debug_printf ("    |-> Base address: %s\n",
405ea9
+		    core_addr_to_string (value_address (array)));
405ea9
+      debug_printf ("    '-> Contiguous = %s\n",
405ea9
+		    (is_all_contiguous ? "Yes" : "No"));
405ea9
     }
405ea9
 
405ea9
-  /* Internal type of array is arranged right to left.  */
405ea9
-  for (int i = nargs; i > 0; i--)
405ea9
+  /* Should we repack this array slice?  */
405ea9
+  if (!is_all_contiguous && (repack_array_slices || is_string_p))
405ea9
     {
405ea9
-      struct type *array_type = check_typedef (value_type (array));
405ea9
-      LONGEST index = subscript_array[i - 1];
405ea9
+      /* Build a type for the repacked slice.  */
405ea9
+      struct type *repacked_array_type = inner_element_type;
405ea9
+      for (const auto &d : slice_dims)
405ea9
+	{
405ea9
+	  /* Create the range.  */
405ea9
+	  dynamic_prop p_low, p_high, p_stride;
405ea9
+
405ea9
+	  p_low.set_const_val (d.low);
405ea9
+	  p_high.set_const_val (d.high);
405ea9
+	  p_stride.set_const_val (TYPE_LENGTH (repacked_array_type));
405ea9
+
405ea9
+	  struct type *new_range
405ea9
+	    = create_range_type_with_stride ((struct type *) NULL,
405ea9
+					     TYPE_TARGET_TYPE (d.index),
405ea9
+					     &p_low, &p_high, 0, &p_stride,
405ea9
+					     true);
405ea9
+	  repacked_array_type
405ea9
+	    = create_array_type (nullptr, repacked_array_type, new_range);
405ea9
+	}
405ea9
 
405ea9
-      array = value_subscripted_rvalue (array, index,
405ea9
-					f77_get_lowerbound (array_type));
405ea9
+      /* Now copy the elements from the original ARRAY into the packed
405ea9
+	 array value DEST.  */
405ea9
+      struct value *dest = allocate_value (repacked_array_type);
405ea9
+      if (value_lazy (array)
405ea9
+	  || (total_offset + TYPE_LENGTH (array_slice_type)
405ea9
+	      > TYPE_LENGTH (check_typedef (value_type (array)))))
405ea9
+	{
405ea9
+	  fortran_array_walker<fortran_lazy_array_repacker_impl> p
405ea9
+	    (array_slice_type, value_address (array) + total_offset, dest);
405ea9
+	  p.walk ();
405ea9
+	}
405ea9
+      else
405ea9
+	{
405ea9
+	  fortran_array_walker<fortran_array_repacker_impl> p
405ea9
+	    (array_slice_type, value_address (array) + total_offset,
405ea9
+	     total_offset, array, dest);
405ea9
+	  p.walk ();
405ea9
+	}
405ea9
+      array = dest;
405ea9
+    }
405ea9
+  else
405ea9
+    {
405ea9
+      if (VALUE_LVAL (array) == lval_memory)
405ea9
+	{
405ea9
+	  /* If the value we're taking a slice from is not yet loaded, or
405ea9
+	     the requested slice is outside the values content range then
405ea9
+	     just create a new lazy value pointing at the memory where the
405ea9
+	     contents we're looking for exist.  */
405ea9
+	  if (value_lazy (array)
405ea9
+	      || (total_offset + TYPE_LENGTH (array_slice_type)
405ea9
+		  > TYPE_LENGTH (check_typedef (value_type (array)))))
405ea9
+	    array = value_at_lazy (array_slice_type,
405ea9
+				   value_address (array) + total_offset);
405ea9
+	  else
405ea9
+	    array = value_from_contents_and_address (array_slice_type,
405ea9
+						     (value_contents (array)
405ea9
+						      + total_offset),
405ea9
+						     (value_address (array)
405ea9
+						      + total_offset));
405ea9
+	}
405ea9
+      else if (!value_lazy (array))
405ea9
+	{
405ea9
+	  const void *valaddr = value_contents (array) + total_offset;
405ea9
+	  array = allocate_value (array_slice_type);
405ea9
+	  memcpy (value_contents_raw (array), valaddr, TYPE_LENGTH (array_slice_type));
405ea9
+	}
405ea9
+      else
405ea9
+	error (_("cannot subscript arrays that are not in memory"));
405ea9
     }
405ea9
 
405ea9
   return array;
405ea9
@@ -1031,11 +1489,50 @@ builtin_f_type (struct gdbarch *gdbarch)
405ea9
   return (const struct builtin_f_type *) gdbarch_data (gdbarch, f_type_data);
405ea9
 }
405ea9
 
405ea9
+/* Command-list for the "set/show fortran" prefix command.  */
405ea9
+static struct cmd_list_element *set_fortran_list;
405ea9
+static struct cmd_list_element *show_fortran_list;
405ea9
+
405ea9
 void _initialize_f_language ();
405ea9
 void
405ea9
 _initialize_f_language ()
405ea9
 {
405ea9
   f_type_data = gdbarch_data_register_post_init (build_fortran_types);
405ea9
+
405ea9
+  add_basic_prefix_cmd ("fortran", no_class,
405ea9
+			_("Prefix command for changing Fortran-specific settings."),
405ea9
+			&set_fortran_list, "set fortran ", 0, &setlist);
405ea9
+
405ea9
+  add_show_prefix_cmd ("fortran", no_class,
405ea9
+		       _("Generic command for showing Fortran-specific settings."),
405ea9
+		       &show_fortran_list, "show fortran ", 0, &showlist);
405ea9
+
405ea9
+  add_setshow_boolean_cmd ("repack-array-slices", class_vars,
405ea9
+			   &repack_array_slices, _("\
405ea9
+Enable or disable repacking of non-contiguous array slices."), _("\
405ea9
+Show whether non-contiguous array slices are repacked."), _("\
405ea9
+When the user requests a slice of a Fortran array then we can either return\n\
405ea9
+a descriptor that describes the array in place (using the original array data\n\
405ea9
+in its existing location) or the original data can be repacked (copied) to a\n\
405ea9
+new location.\n\
405ea9
+\n\
405ea9
+When the content of the array slice is contiguous within the original array\n\
405ea9
+then the result will never be repacked, but when the data for the new array\n\
405ea9
+is non-contiguous within the original array repacking will only be performed\n\
405ea9
+when this setting is on."),
405ea9
+			   NULL,
405ea9
+			   show_repack_array_slices,
405ea9
+			   &set_fortran_list, &show_fortran_list);
405ea9
+
405ea9
+  /* Debug Fortran's array slicing logic.  */
405ea9
+  add_setshow_boolean_cmd ("fortran-array-slicing", class_maintenance,
405ea9
+			   &fortran_array_slicing_debug, _("\
405ea9
+Set debugging of Fortran array slicing."), _("\
405ea9
+Show debugging of Fortran array slicing."), _("\
405ea9
+When on, debugging of Fortran array slicing is enabled."),
405ea9
+			    NULL,
405ea9
+			    show_fortran_array_slicing_debug,
405ea9
+			    &setdebuglist, &showdebuglist);
405ea9
 }
405ea9
 
405ea9
 /* See f-lang.h.  */
405ea9
@@ -1074,3 +1571,56 @@ fortran_preserve_arg_pointer (struct value *arg, struct type *type)
405ea9
     return value_type (arg);
405ea9
   return type;
405ea9
 }
405ea9
+
405ea9
+/* See f-lang.h.  */
405ea9
+
405ea9
+CORE_ADDR
405ea9
+fortran_adjust_dynamic_array_base_address_hack (struct type *type,
405ea9
+						CORE_ADDR address)
405ea9
+{
405ea9
+  gdb_assert (type->code () == TYPE_CODE_ARRAY);
405ea9
+
405ea9
+  int ndimensions = calc_f77_array_dims (type);
405ea9
+  LONGEST total_offset = 0;
405ea9
+
405ea9
+  /* Walk through each of the dimensions of this array type and figure out
405ea9
+     if any of the dimensions are "backwards", that is the base address
405ea9
+     for this dimension points to the element at the highest memory
405ea9
+     address and the stride is negative.  */
405ea9
+  struct type *tmp_type = type;
405ea9
+  for (int i = 0 ; i < ndimensions; ++i)
405ea9
+    {
405ea9
+      /* Grab the range for this dimension and extract the lower and upper
405ea9
+	 bounds.  */
405ea9
+      tmp_type = check_typedef (tmp_type);
405ea9
+      struct type *range_type = tmp_type->index_type ();
405ea9
+      LONGEST lowerbound, upperbound, stride;
405ea9
+      if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
405ea9
+	error ("failed to get range bounds");
405ea9
+
405ea9
+      /* Figure out the stride for this dimension.  */
405ea9
+      struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
405ea9
+      stride = tmp_type->index_type ()->bounds ()->bit_stride ();
405ea9
+      if (stride == 0)
405ea9
+	stride = type_length_units (elt_type);
405ea9
+      else
405ea9
+	{
405ea9
+	  struct gdbarch *arch = get_type_arch (elt_type);
405ea9
+	  int unit_size = gdbarch_addressable_memory_unit_size (arch);
405ea9
+	  stride /= (unit_size * 8);
405ea9
+	}
405ea9
+
405ea9
+      /* If this dimension is "backward" then figure out the offset
405ea9
+	 adjustment required to point to the element at the lowest memory
405ea9
+	 address, and add this to the total offset.  */
405ea9
+      LONGEST offset = 0;
405ea9
+      if (stride < 0 && lowerbound < upperbound)
405ea9
+	offset = (upperbound - lowerbound) * stride;
405ea9
+      total_offset += offset;
405ea9
+      tmp_type = TYPE_TARGET_TYPE (tmp_type);
405ea9
+    }
405ea9
+
405ea9
+  /* Adjust the address of this object and return it.  */
405ea9
+  address += total_offset;
405ea9
+  return address;
405ea9
+}
405ea9
diff --git a/gdb/f-lang.h b/gdb/f-lang.h
405ea9
--- a/gdb/f-lang.h
405ea9
+++ b/gdb/f-lang.h
405ea9
@@ -64,7 +64,6 @@ extern void f77_get_dynamic_array_length (struct type *);
405ea9
 
405ea9
 extern int calc_f77_array_dims (struct type *);
405ea9
 
405ea9
-
405ea9
 /* Fortran (F77) types */
405ea9
 
405ea9
 struct builtin_f_type
405ea9
@@ -122,4 +121,22 @@ extern struct value *fortran_argument_convert (struct value *value,
405ea9
 extern struct type *fortran_preserve_arg_pointer (struct value *arg,
405ea9
 						  struct type *type);
405ea9
 
405ea9
+/* Fortran arrays can have a negative stride.  When this happens it is
405ea9
+   often the case that the base address for an object is not the lowest
405ea9
+   address occupied by that object.  For example, an array slice (10:1:-1)
405ea9
+   will be encoded with lower bound 1, upper bound 10, a stride of
405ea9
+   -ELEMENT_SIZE, and have a base address pointer that points at the
405ea9
+   element with the highest address in memory.
405ea9
+
405ea9
+   This really doesn't play well with our current model of value contents,
405ea9
+   but could easily require a significant update in order to be supported
405ea9
+   "correctly".
405ea9
+
405ea9
+   For now, we manually force the base address to be the lowest addressed
405ea9
+   element here.  Yes, this will break some things, but it fixes other
405ea9
+   things.  The hope is that it fixes more than it breaks.  */
405ea9
+
405ea9
+extern CORE_ADDR fortran_adjust_dynamic_array_base_address_hack
405ea9
+	(struct type *type, CORE_ADDR address);
405ea9
+
405ea9
 #endif /* F_LANG_H */
405ea9
diff --git a/gdb/f-valprint.c b/gdb/f-valprint.c
405ea9
--- a/gdb/f-valprint.c
405ea9
+++ b/gdb/f-valprint.c
405ea9
@@ -35,6 +35,7 @@
405ea9
 #include "dictionary.h"
405ea9
 #include "cli/cli-style.h"
405ea9
 #include "gdbarch.h"
405ea9
+#include "f-array-walker.h"
405ea9
 
405ea9
 static void f77_get_dynamic_length_of_aggregate (struct type *);
405ea9
 
405ea9
@@ -100,100 +101,103 @@ f77_get_dynamic_length_of_aggregate (struct type *type)
405ea9
     * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
405ea9
 }
405ea9
 
405ea9
-/* Actual function which prints out F77 arrays, Valaddr == address in 
405ea9
-   the superior.  Address == the address in the inferior.  */
405ea9
+/* A class used by FORTRAN_PRINT_ARRAY as a specialisation of the array
405ea9
+   walking template.  This specialisation prints Fortran arrays.  */
405ea9
 
405ea9
-static void
405ea9
-f77_print_array_1 (int nss, int ndimensions, struct type *type,
405ea9
-		   const gdb_byte *valaddr,
405ea9
-		   int embedded_offset, CORE_ADDR address,
405ea9
-		   struct ui_file *stream, int recurse,
405ea9
-		   const struct value *val,
405ea9
-		   const struct value_print_options *options,
405ea9
-		   int *elts)
405ea9
+class fortran_array_printer_impl : public fortran_array_walker_base_impl
405ea9
 {
405ea9
-  struct type *range_type = check_typedef (type)->index_type ();
405ea9
-  CORE_ADDR addr = address + embedded_offset;
405ea9
-  LONGEST lowerbound, upperbound;
405ea9
-  LONGEST i;
405ea9
-
405ea9
-  get_discrete_bounds (range_type, &lowerbound, &upperbound);
405ea9
-
405ea9
-  if (nss != ndimensions)
405ea9
-    {
405ea9
-      struct gdbarch *gdbarch = get_type_arch (type);
405ea9
-      size_t dim_size = type_length_units (TYPE_TARGET_TYPE (type));
405ea9
-      int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
405ea9
-      size_t byte_stride = type->bit_stride () / (unit_size * 8);
405ea9
-      if (byte_stride == 0)
405ea9
-	byte_stride = dim_size;
405ea9
-      size_t offs = 0;
405ea9
-
405ea9
-      for (i = lowerbound;
405ea9
-	   (i < upperbound + 1 && (*elts) < options->print_max);
405ea9
-	   i++)
405ea9
-	{
405ea9
-	  struct value *subarray = value_from_contents_and_address
405ea9
-	    (TYPE_TARGET_TYPE (type), value_contents_for_printing_const (val)
405ea9
-	     + offs, addr + offs);
405ea9
-
405ea9
-	  fprintf_filtered (stream, "(");
405ea9
-	  f77_print_array_1 (nss + 1, ndimensions, value_type (subarray),
405ea9
-			     value_contents_for_printing (subarray),
405ea9
-			     value_embedded_offset (subarray),
405ea9
-			     value_address (subarray),
405ea9
-			     stream, recurse, subarray, options, elts);
405ea9
-	  offs += byte_stride;
405ea9
-	  fprintf_filtered (stream, ")");
405ea9
-
405ea9
-	  if (i < upperbound)
405ea9
-	    fprintf_filtered (stream, " ");
405ea9
-	}
405ea9
-      if (*elts >= options->print_max && i < upperbound)
405ea9
-	fprintf_filtered (stream, "...");
405ea9
-    }
405ea9
-  else
405ea9
-    {
405ea9
-      for (i = lowerbound; i < upperbound + 1 && (*elts) < options->print_max;
405ea9
-	   i++, (*elts)++)
405ea9
-	{
405ea9
-	  struct value *elt = value_subscript ((struct value *)val, i);
405ea9
-
405ea9
-	  common_val_print (elt, stream, recurse, options, current_language);
405ea9
-
405ea9
-	  if (i != upperbound)
405ea9
-	    fprintf_filtered (stream, ", ");
405ea9
-
405ea9
-	  if ((*elts == options->print_max - 1)
405ea9
-	      && (i != upperbound))
405ea9
-	    fprintf_filtered (stream, "...");
405ea9
-	}
405ea9
-    }
405ea9
-}
405ea9
+public:
405ea9
+  /* Constructor.  TYPE is the array type being printed, ADDRESS is the
405ea9
+     address in target memory for the object of TYPE being printed.  VAL is
405ea9
+     the GDB value (of TYPE) being printed.  STREAM is where to print to,
405ea9
+     RECOURSE is passed through (and prevents infinite recursion), and
405ea9
+     OPTIONS are the printing control options.  */
405ea9
+  explicit fortran_array_printer_impl (struct type *type,
405ea9
+				       CORE_ADDR address,
405ea9
+				       struct value *val,
405ea9
+				       struct ui_file *stream,
405ea9
+				       int recurse,
405ea9
+				       const struct value_print_options *options)
405ea9
+    : m_elts (0),
405ea9
+      m_val (val),
405ea9
+      m_stream (stream),
405ea9
+      m_recurse (recurse),
405ea9
+      m_options (options)
405ea9
+  { /* Nothing.  */ }
405ea9
+
405ea9
+  /* Called while iterating over the array bounds.  When SHOULD_CONTINUE is
405ea9
+     false then we must return false, as we have reached the end of the
405ea9
+     array bounds for this dimension.  However, we also return false if we
405ea9
+     have printed too many elements (after printing '...').  In all other
405ea9
+     cases, return true.  */
405ea9
+  bool continue_walking (bool should_continue)
405ea9
+  {
405ea9
+    bool cont = should_continue && (m_elts < m_options->print_max);
405ea9
+    if (!cont && should_continue)
405ea9
+      fputs_filtered ("...", m_stream);
405ea9
+    return cont;
405ea9
+  }
405ea9
+
405ea9
+  /* Called when we start iterating over a dimension.  If it's not the
405ea9
+     inner most dimension then print an opening '(' character.  */
405ea9
+  void start_dimension (bool inner_p)
405ea9
+  {
405ea9
+    fputs_filtered ("(", m_stream);
405ea9
+  }
405ea9
+
405ea9
+  /* Called when we finish processing a batch of items within a dimension
405ea9
+     of the array.  Depending on whether this is the inner most dimension
405ea9
+     or not we print different things, but this is all about adding
405ea9
+     separators between elements, and dimensions of the array.  */
405ea9
+  void finish_dimension (bool inner_p, bool last_p)
405ea9
+  {
405ea9
+    fputs_filtered (")", m_stream);
405ea9
+    if (!last_p)
405ea9
+      fputs_filtered (" ", m_stream);
405ea9
+  }
405ea9
+
405ea9
+  /* Called to process an element of ELT_TYPE at offset ELT_OFF from the
405ea9
+     start of the parent object.  */
405ea9
+  void process_element (struct type *elt_type, LONGEST elt_off, bool last_p)
405ea9
+  {
405ea9
+    /* Extract the element value from the parent value.  */
405ea9
+    struct value *e_val
405ea9
+      = value_from_component (m_val, elt_type, elt_off);
405ea9
+    common_val_print (e_val, m_stream, m_recurse, m_options, current_language);
405ea9
+    if (!last_p)
405ea9
+      fputs_filtered (", ", m_stream);
405ea9
+    ++m_elts;
405ea9
+  }
405ea9
+
405ea9
+private:
405ea9
+  /* The number of elements printed so far.  */
405ea9
+  int m_elts;
405ea9
+
405ea9
+  /* The value from which we are printing elements.  */
405ea9
+  struct value *m_val;
405ea9
+
405ea9
+  /* The stream we should print too.  */
405ea9
+  struct ui_file *m_stream;
405ea9
+
405ea9
+  /* The recursion counter, passed through when we print each element.  */
405ea9
+  int m_recurse;
405ea9
+
405ea9
+  /* The print control options.  Gives us the maximum number of elements to
405ea9
+     print, and is passed through to each element that we print.  */
405ea9
+  const struct value_print_options *m_options = nullptr;
405ea9
+};
405ea9
 
405ea9
-/* This function gets called to print an F77 array, we set up some 
405ea9
-   stuff and then immediately call f77_print_array_1().  */
405ea9
+/* This function gets called to print a Fortran array.  */
405ea9
 
405ea9
 static void
405ea9
-f77_print_array (struct type *type, const gdb_byte *valaddr,
405ea9
-		 int embedded_offset,
405ea9
-		 CORE_ADDR address, struct ui_file *stream,
405ea9
-		 int recurse,
405ea9
-		 const struct value *val,
405ea9
-		 const struct value_print_options *options)
405ea9
+fortran_print_array (struct type *type, CORE_ADDR address,
405ea9
+		     struct ui_file *stream, int recurse,
405ea9
+		     const struct value *val,
405ea9
+		     const struct value_print_options *options)
405ea9
 {
405ea9
-  int ndimensions;
405ea9
-  int elts = 0;
405ea9
-
405ea9
-  ndimensions = calc_f77_array_dims (type);
405ea9
-
405ea9
-  if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
405ea9
-    error (_("\
405ea9
-Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"),
405ea9
-	   ndimensions, MAX_FORTRAN_DIMS);
405ea9
-
405ea9
-  f77_print_array_1 (1, ndimensions, type, valaddr, embedded_offset,
405ea9
-		     address, stream, recurse, val, options, &elts);
405ea9
+  fortran_array_walker<fortran_array_printer_impl> p
405ea9
+    (type, address, (struct value *) val, stream, recurse, options);
405ea9
+  p.walk ();
405ea9
 }
405ea9
 
405ea9
 
405ea9
@@ -236,12 +240,7 @@ f_value_print_inner (struct value *val, struct ui_file *stream, int recurse,
405ea9
 
405ea9
     case TYPE_CODE_ARRAY:
405ea9
       if (TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_CHAR)
405ea9
-	{
405ea9
-	  fprintf_filtered (stream, "(");
405ea9
-	  f77_print_array (type, valaddr, 0,
405ea9
-			   address, stream, recurse, val, options);
405ea9
-	  fprintf_filtered (stream, ")");
405ea9
-	}
405ea9
+	fortran_print_array (type, address, stream, recurse, val, options);
405ea9
       else
405ea9
 	{
405ea9
 	  struct type *ch_type = TYPE_TARGET_TYPE (type);
405ea9
diff --git a/gdb/gdbtypes.c b/gdb/gdbtypes.c
405ea9
--- a/gdb/gdbtypes.c
405ea9
+++ b/gdb/gdbtypes.c
405ea9
@@ -39,6 +39,7 @@
405ea9
 #include "dwarf2/loc.h"
405ea9
 #include "gdbcore.h"
405ea9
 #include "floatformat.h"
405ea9
+#include "f-lang.h"
405ea9
 #include <algorithm>
405ea9
 
405ea9
 /* Initialize BADNESS constants.  */
405ea9
@@ -2695,7 +2696,16 @@ resolve_dynamic_type_internal (struct type *type,
405ea9
   prop = TYPE_DATA_LOCATION (resolved_type);
405ea9
   if (prop != NULL
405ea9
       && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
405ea9
-    prop->set_const_val (value);
405ea9
+    {
405ea9
+      /* Start of Fortran hack.  See comment in f-lang.h for what is going
405ea9
+	 on here.*/
405ea9
+      if (current_language->la_language == language_fortran
405ea9
+	  && resolved_type->code () == TYPE_CODE_ARRAY)
405ea9
+	value = fortran_adjust_dynamic_array_base_address_hack (resolved_type,
405ea9
+								value);
405ea9
+      /* End of Fortran hack.  */
405ea9
+      prop->set_const_val (value);
405ea9
+    }
405ea9
 
405ea9
   return resolved_type;
405ea9
 }
405ea9
@@ -3600,9 +3610,11 @@ is_scalar_type_recursive (struct type *t)
405ea9
       LONGEST low_bound, high_bound;
405ea9
       struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
405ea9
 
405ea9
-      get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
405ea9
-
405ea9
-      return high_bound == low_bound && is_scalar_type_recursive (elt_type);
405ea9
+      if (get_discrete_bounds (t->index_type (), &low_bound, &high_bound))
405ea9
+	return (high_bound == low_bound
405ea9
+	        && is_scalar_type_recursive (elt_type));
405ea9
+      else
405ea9
+	return 0;
405ea9
     }
405ea9
   /* Are we dealing with a struct with one element?  */
405ea9
   else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
405ea9
diff --git a/gdb/testsuite/gdb.fortran/array-slices-bad.exp b/gdb/testsuite/gdb.fortran/array-slices-bad.exp
405ea9
new file mode 100644
405ea9
--- /dev/null
405ea9
+++ b/gdb/testsuite/gdb.fortran/array-slices-bad.exp
405ea9
@@ -0,0 +1,69 @@
405ea9
+# Copyright 2020 Free Software Foundation, Inc.
405ea9
+
405ea9
+# This program is free software; you can redistribute it and/or modify
405ea9
+# it under the terms of the GNU General Public License as published by
405ea9
+# the Free Software Foundation; either version 3 of the License, or
405ea9
+# (at your option) any later version.
405ea9
+#
405ea9
+# This program is distributed in the hope that it will be useful,
405ea9
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
405ea9
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
405ea9
+# GNU General Public License for more details.
405ea9
+#
405ea9
+# You should have received a copy of the GNU General Public License
405ea9
+# along with this program.  If not, see <http://www.gnu.org/licenses/> .
405ea9
+
405ea9
+# Test invalid element and slice array accesses.
405ea9
+
405ea9
+if {[skip_fortran_tests]} { return -1 }
405ea9
+
405ea9
+standard_testfile ".f90"
405ea9
+load_lib fortran.exp
405ea9
+
405ea9
+if {[prepare_for_testing ${testfile}.exp ${testfile} ${srcfile} \
405ea9
+	 {debug f90}]} {
405ea9
+    return -1
405ea9
+}
405ea9
+
405ea9
+if ![fortran_runto_main] {
405ea9
+    untested "could not run to main"
405ea9
+    return -1
405ea9
+}
405ea9
+
405ea9
+# gdb_breakpoint [gdb_get_line_number "Display Message Breakpoint"]
405ea9
+gdb_breakpoint [gdb_get_line_number "First Breakpoint"]
405ea9
+gdb_breakpoint [gdb_get_line_number "Second Breakpoint"]
405ea9
+gdb_breakpoint [gdb_get_line_number "Final Breakpoint"]
405ea9
+
405ea9
+gdb_continue_to_breakpoint "First Breakpoint"
405ea9
+
405ea9
+# Access not yet allocated array.
405ea9
+gdb_test "print other" " = <not allocated>"
405ea9
+gdb_test "print other(0:4,2:3)" "array not allocated"
405ea9
+gdb_test "print other(1,1)" "no such vector element \\(vector not allocated\\)"
405ea9
+
405ea9
+# Access not yet associated pointer.
405ea9
+gdb_test "print pointer2d" " = <not associated>"
405ea9
+gdb_test "print pointer2d(1:2,1:2)" "array not associated"
405ea9
+gdb_test "print pointer2d(1,1)" "no such vector element \\(vector not associated\\)"
405ea9
+
405ea9
+gdb_continue_to_breakpoint "Second Breakpoint"
405ea9
+
405ea9
+# Accessing just outside the arrays.
405ea9
+foreach name {array pointer2d other} {
405ea9
+    gdb_test "print $name (0:,:)" "array subscript out of bounds"
405ea9
+    gdb_test "print $name (:11,:)" "array subscript out of bounds"
405ea9
+    gdb_test "print $name (:,0:)" "array subscript out of bounds"
405ea9
+    gdb_test "print $name (:,:11)" "array subscript out of bounds"
405ea9
+
405ea9
+    gdb_test "print $name (0,:)" "no such vector element"
405ea9
+    gdb_test "print $name (11,:)" "no such vector element"
405ea9
+    gdb_test "print $name (:,0)" "no such vector element"
405ea9
+    gdb_test "print $name (:,11)" "no such vector element"
405ea9
+}
405ea9
+
405ea9
+# Stride in the wrong direction.
405ea9
+gdb_test "print array (1:10:-1,:)" "incorrect stride and boundary combination"
405ea9
+gdb_test "print array (:,1:10:-1)" "incorrect stride and boundary combination"
405ea9
+gdb_test "print array (10:1:1,:)" "incorrect stride and boundary combination"
405ea9
+gdb_test "print array (:,10:1:1)" "incorrect stride and boundary combination"
405ea9
diff --git a/gdb/testsuite/gdb.fortran/array-slices-bad.f90 b/gdb/testsuite/gdb.fortran/array-slices-bad.f90
405ea9
new file mode 100644
405ea9
--- /dev/null
405ea9
+++ b/gdb/testsuite/gdb.fortran/array-slices-bad.f90
405ea9
@@ -0,0 +1,42 @@
405ea9
+! Copyright 2020 Free Software Foundation, Inc.
405ea9
+!
405ea9
+! This program is free software; you can redistribute it and/or modify
405ea9
+! it under the terms of the GNU General Public License as published by
405ea9
+! the Free Software Foundation; either version 3 of the License, or
405ea9
+! (at your option) any later version.
405ea9
+!
405ea9
+! This program is distributed in the hope that it will be useful,
405ea9
+! but WITHOUT ANY WARRANTY; without even the implied warranty of
405ea9
+! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
405ea9
+! GNU General Public License for more details.
405ea9
+!
405ea9
+! You should have received a copy of the GNU General Public License
405ea9
+! along with this program.  If not, see <http://www.gnu.org/licenses/>.
405ea9
+
405ea9
+!
405ea9
+! Start of test program.
405ea9
+!
405ea9
+program test
405ea9
+
405ea9
+  ! Declare variables used in this test.
405ea9
+  integer, dimension (1:10,1:10) :: array
405ea9
+  integer, allocatable :: other (:, :)
405ea9
+  integer, dimension(:,:), pointer :: pointer2d => null()
405ea9
+  integer, dimension(1:10,1:10), target :: tarray
405ea9
+
405ea9
+  print *, "" ! First Breakpoint.
405ea9
+
405ea9
+  ! Allocate or associate any variables as needed.
405ea9
+  allocate (other (1:10, 1:10))
405ea9
+  pointer2d => tarray
405ea9
+  array = 0
405ea9
+
405ea9
+  print *, "" ! Second Breakpoint.
405ea9
+
405ea9
+  ! All done.  Deallocate.
405ea9
+  deallocate (other)
405ea9
+
405ea9
+  ! GDB catches this final breakpoint to indicate the end of the test.
405ea9
+  print *, "" ! Final Breakpoint.
405ea9
+
405ea9
+end program test
405ea9
diff --git a/gdb/testsuite/gdb.fortran/array-slices-sub-slices.exp b/gdb/testsuite/gdb.fortran/array-slices-sub-slices.exp
405ea9
new file mode 100644
405ea9
--- /dev/null
405ea9
+++ b/gdb/testsuite/gdb.fortran/array-slices-sub-slices.exp
405ea9
@@ -0,0 +1,111 @@
405ea9
+# Copyright 2020 Free Software Foundation, Inc.
405ea9
+
405ea9
+# This program is free software; you can redistribute it and/or modify
405ea9
+# it under the terms of the GNU General Public License as published by
405ea9
+# the Free Software Foundation; either version 3 of the License, or
405ea9
+# (at your option) any later version.
405ea9
+#
405ea9
+# This program is distributed in the hope that it will be useful,
405ea9
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
405ea9
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
405ea9
+# GNU General Public License for more details.
405ea9
+#
405ea9
+# You should have received a copy of the GNU General Public License
405ea9
+# along with this program.  If not, see <http://www.gnu.org/licenses/> .
405ea9
+
405ea9
+# Create a slice of an array, then take a slice of that slice.
405ea9
+
405ea9
+if {[skip_fortran_tests]} { return -1 }
405ea9
+
405ea9
+standard_testfile ".f90"
405ea9
+load_lib fortran.exp
405ea9
+
405ea9
+if {[prepare_for_testing ${testfile}.exp ${testfile} ${srcfile} \
405ea9
+	 {debug f90}]} {
405ea9
+    return -1
405ea9
+}
405ea9
+
405ea9
+if ![fortran_runto_main] {
405ea9
+    untested "could not run to main"
405ea9
+    return -1
405ea9
+}
405ea9
+
405ea9
+# gdb_breakpoint [gdb_get_line_number "Display Message Breakpoint"]
405ea9
+gdb_breakpoint [gdb_get_line_number "Stop Here"]
405ea9
+gdb_breakpoint [gdb_get_line_number "Final Breakpoint"]
405ea9
+
405ea9
+# We're going to print some reasonably large arrays.
405ea9
+gdb_test_no_output "set print elements unlimited"
405ea9
+
405ea9
+gdb_continue_to_breakpoint "Stop Here"
405ea9
+
405ea9
+# Print a slice, capture the convenience variable name created.
405ea9
+set cmd "print array (1:10:2, 1:10:2)"
405ea9
+gdb_test_multiple $cmd $cmd {
405ea9
+    -re "\r\n\\\$(\\d+) = .*\r\n$gdb_prompt $" {
405ea9
+	set varname "\$$expect_out(1,string)"
405ea9
+    }
405ea9
+}
405ea9
+
405ea9
+# Now check that we can correctly extract all the elements from this
405ea9
+# slice.
405ea9
+for { set j 1 } { $j < 6 } { incr j } {
405ea9
+    for { set i 1 } { $i < 6 } { incr i } {
405ea9
+	set val [expr ((($i - 1) * 2) + (($j - 1) * 20)) + 1]
405ea9
+	gdb_test "print ${varname} ($i,$j)" " = $val"
405ea9
+    }
405ea9
+}
405ea9
+
405ea9
+# Now take a slice of the slice.
405ea9
+gdb_test "print ${varname} (3:5, 3:5)" \
405ea9
+    " = \\(\\(45, 47, 49\\) \\(65, 67, 69\\) \\(85, 87, 89\\)\\)"
405ea9
+
405ea9
+# Now take a different slice of a slice.
405ea9
+set cmd "print ${varname} (1:5:2, 1:5:2)"
405ea9
+gdb_test_multiple $cmd $cmd {
405ea9
+    -re "\r\n\\\$(\\d+) = \\(\\(1, 5, 9\\) \\(41, 45, 49\\) \\(81, 85, 89\\)\\)\r\n$gdb_prompt $" {
405ea9
+	set varname "\$$expect_out(1,string)"
405ea9
+	pass $gdb_test_name
405ea9
+    }
405ea9
+}
405ea9
+
405ea9
+# Now take a slice from the slice, of a slice!
405ea9
+set cmd "print ${varname} (1:3:2, 1:3:2)"
405ea9
+gdb_test_multiple $cmd $cmd {
405ea9
+    -re "\r\n\\\$(\\d+) = \\(\\(1, 9\\) \\(81, 89\\)\\)\r\n$gdb_prompt $" {
405ea9
+	set varname "\$$expect_out(1,string)"
405ea9
+	pass $gdb_test_name
405ea9
+    }
405ea9
+}
405ea9
+
405ea9
+# And again!
405ea9
+set cmd "print ${varname} (1:2:2, 1:2:2)"
405ea9
+gdb_test_multiple $cmd $cmd {
405ea9
+    -re "\r\n\\\$(\\d+) = \\(\\(1\\)\\)\r\n$gdb_prompt $" {
405ea9
+	set varname "\$$expect_out(1,string)"
405ea9
+	pass $gdb_test_name
405ea9
+    }
405ea9
+}
405ea9
+
405ea9
+# Test taking a slice with stride of a string.  This isn't actually
405ea9
+# supported within gfortran (at least), but naturally drops out of how
405ea9
+# GDB models arrays and strings in a similar way, so we may as well
405ea9
+# test that this is still working.
405ea9
+gdb_test "print str (1:26:2)" " = 'acegikmoqsuwy'"
405ea9
+gdb_test "print str (26:1:-1)" " = 'zyxwvutsrqponmlkjihgfedcba'"
405ea9
+gdb_test "print str (26:1:-2)" " = 'zxvtrpnljhfdb'"
405ea9
+
405ea9
+# Now test the memory requirements of taking a slice from an array.
405ea9
+# The idea is that we shouldn't require more memory to extract a slice
405ea9
+# than the size of the slice.
405ea9
+#
405ea9
+# This will only work if array repacking is turned on, otherwise GDB
405ea9
+# will create the slice by generating a new type that sits over the
405ea9
+# existing value in memory.
405ea9
+gdb_test_no_output "set fortran repack-array-slices on"
405ea9
+set element_size [get_integer_valueof "sizeof (array (1,1))" "unknown"]
405ea9
+set slice_size [expr $element_size * 4]
405ea9
+gdb_test_no_output "set max-value-size $slice_size"
405ea9
+gdb_test "print array (1:2, 1:2)" "= \\(\\(1, 2\\) \\(11, 12\\)\\)"
405ea9
+gdb_test "print array (2:3, 2:3)" "= \\(\\(12, 13\\) \\(22, 23\\)\\)"
405ea9
+gdb_test "print array (2:5:2, 2:5:2)" "= \\(\\(12, 14\\) \\(32, 34\\)\\)"
405ea9
diff --git a/gdb/testsuite/gdb.fortran/array-slices-sub-slices.f90 b/gdb/testsuite/gdb.fortran/array-slices-sub-slices.f90
405ea9
new file mode 100644
405ea9
--- /dev/null
405ea9
+++ b/gdb/testsuite/gdb.fortran/array-slices-sub-slices.f90
405ea9
@@ -0,0 +1,96 @@
405ea9
+! Copyright 2020 Free Software Foundation, Inc.
405ea9
+!
405ea9
+! This program is free software; you can redistribute it and/or modify
405ea9
+! it under the terms of the GNU General Public License as published by
405ea9
+! the Free Software Foundation; either version 3 of the License, or
405ea9
+! (at your option) any later version.
405ea9
+!
405ea9
+! This program is distributed in the hope that it will be useful,
405ea9
+! but WITHOUT ANY WARRANTY; without even the implied warranty of
405ea9
+! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
405ea9
+! GNU General Public License for more details.
405ea9
+!
405ea9
+! You should have received a copy of the GNU General Public License
405ea9
+! along with this program.  If not, see <http://www.gnu.org/licenses/>.
405ea9
+
405ea9
+!
405ea9
+! Start of test program.
405ea9
+!
405ea9
+program test
405ea9
+  integer, dimension (1:10,1:11) :: array
405ea9
+  character (len=26) :: str = "abcdefghijklmnopqrstuvwxyz"
405ea9
+
405ea9
+  call fill_array_2d (array)
405ea9
+
405ea9
+  ! GDB catches this final breakpoint to indicate the end of the test.
405ea9
+  print *, "" ! Stop Here
405ea9
+
405ea9
+  print *, array
405ea9
+  print *, str
405ea9
+
405ea9
+  ! GDB catches this final breakpoint to indicate the end of the test.
405ea9
+  print *, "" ! Final Breakpoint.
405ea9
+
405ea9
+contains
405ea9
+
405ea9
+  ! Fill a 1D array with a unique positive integer in each element.
405ea9
+  subroutine fill_array_1d (array)
405ea9
+    integer, dimension (:) :: array
405ea9
+    integer :: counter
405ea9
+
405ea9
+    counter = 1
405ea9
+    do j=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
+       array (j) = counter
405ea9
+       counter = counter + 1
405ea9
+    end do
405ea9
+  end subroutine fill_array_1d
405ea9
+
405ea9
+  ! Fill a 2D array with a unique positive integer in each element.
405ea9
+  subroutine fill_array_2d (array)
405ea9
+    integer, dimension (:,:) :: array
405ea9
+    integer :: counter
405ea9
+
405ea9
+    counter = 1
405ea9
+    do i=LBOUND (array, 2), UBOUND (array, 2), 1
405ea9
+       do j=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
+          array (j,i) = counter
405ea9
+          counter = counter + 1
405ea9
+       end do
405ea9
+    end do
405ea9
+  end subroutine fill_array_2d
405ea9
+
405ea9
+  ! Fill a 3D array with a unique positive integer in each element.
405ea9
+  subroutine fill_array_3d (array)
405ea9
+    integer, dimension (:,:,:) :: array
405ea9
+    integer :: counter
405ea9
+
405ea9
+    counter = 1
405ea9
+    do i=LBOUND (array, 3), UBOUND (array, 3), 1
405ea9
+       do j=LBOUND (array, 2), UBOUND (array, 2), 1
405ea9
+          do k=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
+             array (k, j,i) = counter
405ea9
+             counter = counter + 1
405ea9
+          end do
405ea9
+       end do
405ea9
+    end do
405ea9
+  end subroutine fill_array_3d
405ea9
+
405ea9
+  ! Fill a 4D array with a unique positive integer in each element.
405ea9
+  subroutine fill_array_4d (array)
405ea9
+    integer, dimension (:,:,:,:) :: array
405ea9
+    integer :: counter
405ea9
+
405ea9
+    counter = 1
405ea9
+    do i=LBOUND (array, 4), UBOUND (array, 4), 1
405ea9
+       do j=LBOUND (array, 3), UBOUND (array, 3), 1
405ea9
+          do k=LBOUND (array, 2), UBOUND (array, 2), 1
405ea9
+             do l=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
+                array (l, k, j,i) = counter
405ea9
+                counter = counter + 1
405ea9
+             end do
405ea9
+          end do
405ea9
+       end do
405ea9
+    end do
405ea9
+    print *, ""
405ea9
+  end subroutine fill_array_4d
405ea9
+end program test
405ea9
diff --git a/gdb/testsuite/gdb.fortran/array-slices.exp b/gdb/testsuite/gdb.fortran/array-slices.exp
405ea9
--- a/gdb/testsuite/gdb.fortran/array-slices.exp
405ea9
+++ b/gdb/testsuite/gdb.fortran/array-slices.exp
405ea9
@@ -18,6 +18,21 @@
405ea9
 # the subroutine.  This should exercise GDB's ability to handle
405ea9
 # different strides for the different dimensions.
405ea9
 
405ea9
+# Testing GDB's ability to print array (and string) slices, including
405ea9
+# slices that make use of array strides.
405ea9
+#
405ea9
+# In the Fortran code various arrays of different ranks are filled
405ea9
+# with data, and slices are passed to a series of show functions.
405ea9
+#
405ea9
+# In this test script we break in each of the show functions, print
405ea9
+# the array slice that was passed in, and then move up the stack to
405ea9
+# the parent frame and check GDB can manually extract the same slice.
405ea9
+#
405ea9
+# This test also checks that the size of the array slice passed to the
405ea9
+# function (so as extracted and described by the compiler and the
405ea9
+# debug information) matches the size of the slice manually extracted
405ea9
+# by GDB.
405ea9
+
405ea9
 if {[skip_fortran_tests]} { return -1 }
405ea9
 
405ea9
 standard_testfile ".f90"
405ea9
@@ -28,57 +43,224 @@ if {[prepare_for_testing ${testfile}.exp ${testfile} ${srcfile} \
405ea9
     return -1
405ea9
 }
405ea9
 
405ea9
-if ![fortran_runto_main] {
405ea9
-    untested "could not run to main"
405ea9
-    return -1
405ea9
+# Takes the name of an array slice as used in the test source, and extracts
405ea9
+# the base array name.  For example: 'array (1,2)' becomes 'array'.
405ea9
+proc array_slice_to_var { slice_str } {
405ea9
+    regexp "^(?:\\s*\\()*(\[^( \t\]+)" $slice_str matchvar varname
405ea9
+    return $varname
405ea9
 }
405ea9
 
405ea9
-gdb_breakpoint "show"
405ea9
-gdb_breakpoint [gdb_get_line_number "Final Breakpoint"]
405ea9
-
405ea9
-set array_contents \
405ea9
-    [list \
405ea9
-	 " = \\(\\(1, 2, 3, 4, 5, 6, 7, 8, 9, 10\\) \\(11, 12, 13, 14, 15, 16, 17, 18, 19, 20\\) \\(21, 22, 23, 24, 25, 26, 27, 28, 29, 30\\) \\(31, 32, 33, 34, 35, 36, 37, 38, 39, 40\\) \\(41, 42, 43, 44, 45, 46, 47, 48, 49, 50\\) \\(51, 52, 53, 54, 55, 56, 57, 58, 59, 60\\) \\(61, 62, 63, 64, 65, 66, 67, 68, 69, 70\\) \\(71, 72, 73, 74, 75, 76, 77, 78, 79, 80\\) \\(81, 82, 83, 84, 85, 86, 87, 88, 89, 90\\) \\(91, 92, 93, 94, 95, 96, 97, 98, 99, 100\\)\\)" \
405ea9
-	 " = \\(\\(1, 2, 3, 4, 5\\) \\(11, 12, 13, 14, 15\\) \\(21, 22, 23, 24, 25\\) \\(31, 32, 33, 34, 35\\) \\(41, 42, 43, 44, 45\\)\\)" \
405ea9
-	 " = \\(\\(1, 3, 5, 7, 9\\) \\(21, 23, 25, 27, 29\\) \\(41, 43, 45, 47, 49\\) \\(61, 63, 65, 67, 69\\) \\(81, 83, 85, 87, 89\\)\\)" \
405ea9
-	 " = \\(\\(1, 4, 7, 10\\) \\(21, 24, 27, 30\\) \\(41, 44, 47, 50\\) \\(61, 64, 67, 70\\) \\(81, 84, 87, 90\\)\\)" \
405ea9
-	 " = \\(\\(1, 5, 9\\) \\(31, 35, 39\\) \\(61, 65, 69\\) \\(91, 95, 99\\)\\)" \
405ea9
-	 " = \\(\\(-26, -25, -24, -23, -22, -21, -20, -19, -18, -17\\) \\(-19, -18, -17, -16, -15, -14, -13, -12, -11, -10\\) \\(-12, -11, -10, -9, -8, -7, -6, -5, -4, -3\\) \\(-5, -4, -3, -2, -1, 0, 1, 2, 3, 4\\) \\(2, 3, 4, 5, 6, 7, 8, 9, 10, 11\\) \\(9, 10, 11, 12, 13, 14, 15, 16, 17, 18\\) \\(16, 17, 18, 19, 20, 21, 22, 23, 24, 25\\) \\(23, 24, 25, 26, 27, 28, 29, 30, 31, 32\\) \\(30, 31, 32, 33, 34, 35, 36, 37, 38, 39\\) \\(37, 38, 39, 40, 41, 42, 43, 44, 45, 46\\)\\)" \
405ea9
-	 " = \\(\\(-26, -25, -24, -23, -22, -21\\) \\(-19, -18, -17, -16, -15, -14\\) \\(-12, -11, -10, -9, -8, -7\\)\\)" \
405ea9
-	 " = \\(\\(-26, -24, -22, -20, -18\\) \\(-5, -3, -1, 1, 3\\) \\(16, 18, 20, 22, 24\\) \\(37, 39, 41, 43, 45\\)\\)" ]
405ea9
-
405ea9
-set message_strings \
405ea9
-    [list \
405ea9
-	 " = 'array'" \
405ea9
-	 " = 'array \\(1:5,1:5\\)'" \
405ea9
-	 " = 'array \\(1:10:2,1:10:2\\)'" \
405ea9
-	 " = 'array \\(1:10:3,1:10:2\\)'" \
405ea9
-	 " = 'array \\(1:10:5,1:10:3\\)'" ]
405ea9
-
405ea9
-set i 0
405ea9
-foreach result $array_contents msg $message_strings {
405ea9
-    incr i
405ea9
-    with_test_prefix "test $i" {
405ea9
-	gdb_continue_to_breakpoint "show"
405ea9
-	gdb_test "p array" $result
405ea9
-	gdb_test "p message" "$msg"
405ea9
+proc run_test { repack } {
405ea9
+    global binfile gdb_prompt
405ea9
+
405ea9
+    clean_restart ${binfile}
405ea9
+
405ea9
+    if ![fortran_runto_main] {
405ea9
+	untested "could not run to main"
405ea9
+	return -1
405ea9
     }
405ea9
-}
405ea9
 
405ea9
-gdb_continue_to_breakpoint "continue to Final Breakpoint"
405ea9
+    gdb_test_no_output "set fortran repack-array-slices $repack"
405ea9
+
405ea9
+    # gdb_breakpoint [gdb_get_line_number "Display Message Breakpoint"]
405ea9
+    gdb_breakpoint [gdb_get_line_number "Display Element"]
405ea9
+    gdb_breakpoint [gdb_get_line_number "Display String"]
405ea9
+    gdb_breakpoint [gdb_get_line_number "Display Array Slice 1D"]
405ea9
+    gdb_breakpoint [gdb_get_line_number "Display Array Slice 2D"]
405ea9
+    gdb_breakpoint [gdb_get_line_number "Display Array Slice 3D"]
405ea9
+    gdb_breakpoint [gdb_get_line_number "Display Array Slice 4D"]
405ea9
+    gdb_breakpoint [gdb_get_line_number "Final Breakpoint"]
405ea9
+
405ea9
+    # We're going to print some reasonably large arrays.
405ea9
+    gdb_test_no_output "set print elements unlimited"
405ea9
+
405ea9
+    set found_final_breakpoint false
405ea9
+
405ea9
+    # We place a limit on the number of tests that can be run, just in
405ea9
+    # case something goes wrong, and GDB gets stuck in an loop here.
405ea9
+    set test_count 0
405ea9
+    while { $test_count < 500 } {
405ea9
+	with_test_prefix "test $test_count" {
405ea9
+	    incr test_count
405ea9
+
405ea9
+	    set found_final_breakpoint false
405ea9
+	    set expected_result ""
405ea9
+	    set func_name ""
405ea9
+	    gdb_test_multiple "continue" "continue" {
405ea9
+		-re ".*GDB = (\[^\r\n\]+)\r\n" {
405ea9
+		    set expected_result $expect_out(1,string)
405ea9
+		    exp_continue
405ea9
+		}
405ea9
+		-re "! Display Element" {
405ea9
+		    set func_name "show_elem"
405ea9
+		    exp_continue
405ea9
+		}
405ea9
+		-re "! Display String" {
405ea9
+		    set func_name "show_str"
405ea9
+		    exp_continue
405ea9
+		}
405ea9
+		-re "! Display Array Slice (.)D" {
405ea9
+		    set func_name "show_$expect_out(1,string)d"
405ea9
+		    exp_continue
405ea9
+		}
405ea9
+		-re "! Final Breakpoint" {
405ea9
+		    set found_final_breakpoint true
405ea9
+		    exp_continue
405ea9
+		}
405ea9
+		-re "$gdb_prompt $" {
405ea9
+		    # We're done.
405ea9
+		}
405ea9
+	    }
405ea9
 
405ea9
-# Next test that asking for an array with stride at the CLI gives an
405ea9
-# error.
405ea9
-clean_restart ${testfile}
405ea9
+	    if ($found_final_breakpoint) {
405ea9
+		break
405ea9
+	    }
405ea9
 
405ea9
-if ![fortran_runto_main] then {
405ea9
-    perror "couldn't run to main"
405ea9
-    continue
405ea9
+	    # We want to take a look at the line in the previous frame that
405ea9
+	    # called the current function.  I couldn't find a better way of
405ea9
+	    # doing this than 'up', which will print the line, then 'down'
405ea9
+	    # again.
405ea9
+	    #
405ea9
+	    # I don't want to fill the log with passes for these up/down
405ea9
+	    # commands, so we don't report any.  If something goes wrong then we
405ea9
+	    # should get a fail from gdb_test_multiple.
405ea9
+	    set array_slice_name ""
405ea9
+	    set unique_id ""
405ea9
+	    array unset replacement_vars
405ea9
+	    array set replacement_vars {}
405ea9
+	    gdb_test_multiple "up" "up" {
405ea9
+		-re "\r\n\[0-9\]+\[ \t\]+call ${func_name} \\((\[^\r\n\]+)\\)\r\n$gdb_prompt $" {
405ea9
+		    set array_slice_name $expect_out(1,string)
405ea9
+		}
405ea9
+		-re "\r\n\[0-9\]+\[ \t\]+call ${func_name} \\((\[^\r\n\]+)\\)\[ \t\]+! VARS=(\[^ \t\r\n\]+)\r\n$gdb_prompt $" {
405ea9
+		    set array_slice_name $expect_out(1,string)
405ea9
+		    set unique_id $expect_out(2,string)
405ea9
+		}
405ea9
+	    }
405ea9
+	    if {$unique_id != ""} {
405ea9
+		set str ""
405ea9
+		foreach v [split $unique_id ,] {
405ea9
+		    set val [get_integer_valueof "${v}" "??"\
405ea9
+				 "get variable '$v' for '$array_slice_name'"]
405ea9
+		    set replacement_vars($v) $val
405ea9
+		    if {$str != ""} {
405ea9
+			set str "Str,"
405ea9
+		    }
405ea9
+		    set str "$str$v=$val"
405ea9
+		}
405ea9
+		set unique_id " $str"
405ea9
+	    }
405ea9
+	    gdb_test_multiple "down" "down" {
405ea9
+		-re "\r\n$gdb_prompt $" {
405ea9
+		    # Don't issue a pass here.
405ea9
+		}
405ea9
+	    }
405ea9
+
405ea9
+	    # Check we have all the information we need to successfully run one
405ea9
+	    # of these tests.
405ea9
+	    if { $expected_result == "" } {
405ea9
+		perror "failed to extract expected results"
405ea9
+		return 0
405ea9
+	    }
405ea9
+	    if { $array_slice_name == "" } {
405ea9
+		perror "failed to extract array slice name"
405ea9
+		return 0
405ea9
+	    }
405ea9
+
405ea9
+	    # Check GDB can correctly print the array slice that was passed into
405ea9
+	    # the current frame.
405ea9
+	    set pattern [string_to_regexp " = $expected_result"]
405ea9
+	    gdb_test "p array" "$pattern" \
405ea9
+		"check value of '$array_slice_name'$unique_id"
405ea9
+
405ea9
+	    # Get the size of the slice.
405ea9
+	    set size_in_show \
405ea9
+		[get_integer_valueof "sizeof (array)" "show_unknown" \
405ea9
+		     "get sizeof '$array_slice_name'$unique_id in show"]
405ea9
+	    set addr_in_show \
405ea9
+		[get_hexadecimal_valueof "&array" "show_unknown" \
405ea9
+		     "get address '$array_slice_name'$unique_id in show"]
405ea9
+
405ea9
+	    # Now move into the previous frame, and see if GDB can extract the
405ea9
+	    # array slice from the original parent object.  Again, use of
405ea9
+	    # gdb_test_multiple to avoid filling the logs with unnecessary
405ea9
+	    # passes.
405ea9
+	    gdb_test_multiple "up" "up" {
405ea9
+		-re "\r\n$gdb_prompt $" {
405ea9
+		    # Do nothing.
405ea9
+		}
405ea9
+	    }
405ea9
+
405ea9
+	    # Print the array slice, this will force GDB to manually extract the
405ea9
+	    # slice from the parent array.
405ea9
+	    gdb_test "p $array_slice_name" "$pattern" \
405ea9
+		"check array slice '$array_slice_name'$unique_id can be extracted"
405ea9
+
405ea9
+	    # Get the size of the slice in the calling frame.
405ea9
+	    set size_in_parent \
405ea9
+		[get_integer_valueof "sizeof ($array_slice_name)" \
405ea9
+		     "parent_unknown" \
405ea9
+		     "get sizeof '$array_slice_name'$unique_id in parent"]
405ea9
+
405ea9
+	    # Figure out the start and end addresses of the full array in the
405ea9
+	    # parent frame.
405ea9
+	    set full_var_name [array_slice_to_var $array_slice_name]
405ea9
+	    set start_addr [get_hexadecimal_valueof "&${full_var_name}" \
405ea9
+				"start unknown"]
405ea9
+	    set end_addr [get_hexadecimal_valueof \
405ea9
+			      "(&${full_var_name}) + sizeof (${full_var_name})" \
405ea9
+			      "end unknown"]
405ea9
+
405ea9
+	    # The Fortran compiler can choose to either send a descriptor that
405ea9
+	    # describes the array slice to the subroutine, or it can repack the
405ea9
+	    # slice into an array section and send that.
405ea9
+	    #
405ea9
+	    # We find the address range of the original array in the parent,
405ea9
+	    # and the address of the slice in the show function, if the
405ea9
+	    # address of the slice (from show) is in the range of the original
405ea9
+	    # array then repacking has not occurred, otherwise, the slice is
405ea9
+	    # outside of the parent, and repacking must have occurred.
405ea9
+	    #
405ea9
+	    # The goal here is to compare the sizes of the slice in show with
405ea9
+	    # the size of the slice extracted by GDB.  So we can only compare
405ea9
+	    # sizes when GDB's repacking setting matches the repacking
405ea9
+	    # behaviour we got from the compiler.
405ea9
+	    if { ($addr_in_show < $start_addr || $addr_in_show >= $end_addr) \
405ea9
+		 == ($repack == "on") } {
405ea9
+		gdb_assert {$size_in_show == $size_in_parent} \
405ea9
+		    "check sizes match"
405ea9
+	    } elseif { $repack == "off" } {
405ea9
+		# GDB's repacking is off (so slices are left unpacked), but
405ea9
+		# the compiler did pack this one.  As a result we can't
405ea9
+		# compare the sizes between the compiler's slice and GDB's
405ea9
+		# slice.
405ea9
+		verbose -log "slice '$array_slice_name' was repacked, sizes can't be compared"
405ea9
+	    } else {
405ea9
+		# Like the above, but the reverse, GDB's repacking is on, but
405ea9
+		# the compiler didn't repack this slice.
405ea9
+		verbose -log "slice '$array_slice_name' was not repacked, sizes can't be compared"
405ea9
+	    }
405ea9
+
405ea9
+	    # If the array name we just tested included variable names, then
405ea9
+	    # test again with all the variables expanded.
405ea9
+	    if {$unique_id != ""} {
405ea9
+		foreach v [array names replacement_vars] {
405ea9
+		    set val $replacement_vars($v)
405ea9
+		    set array_slice_name \
405ea9
+			[regsub "\\y${v}\\y" $array_slice_name $val]
405ea9
+		}
405ea9
+		gdb_test "p $array_slice_name" "$pattern" \
405ea9
+		    "check array slice '$array_slice_name'$unique_id can be extracted, with variables expanded"
405ea9
+	    }
405ea9
+	}
405ea9
+    }
405ea9
+
405ea9
+    # Ensure we reached the final breakpoint.  If more tests have been added
405ea9
+    # to the test script, and this starts failing, then the safety 'while'
405ea9
+    # loop above might need to be increased.
405ea9
+    gdb_assert {$found_final_breakpoint} "ran all tests"
405ea9
 }
405ea9
 
405ea9
-gdb_breakpoint "show"
405ea9
-gdb_continue_to_breakpoint "show"
405ea9
-gdb_test "up" ".*"
405ea9
-gdb_test "p array (1:10:2, 1:10:2)" \
405ea9
-    "Fortran array strides are not currently supported" \
405ea9
-    "using array stride gives an error"
405ea9
+foreach_with_prefix repack { on off } {
405ea9
+    run_test $repack
405ea9
+}
405ea9
diff --git a/gdb/testsuite/gdb.fortran/array-slices.f90 b/gdb/testsuite/gdb.fortran/array-slices.f90
405ea9
--- a/gdb/testsuite/gdb.fortran/array-slices.f90
405ea9
+++ b/gdb/testsuite/gdb.fortran/array-slices.f90
405ea9
@@ -13,58 +13,368 @@
405ea9
 ! You should have received a copy of the GNU General Public License
405ea9
 ! along with this program.  If not, see <http://www.gnu.org/licenses/>.
405ea9
 
405ea9
-subroutine show (message, array)
405ea9
-  character (len=*) :: message
405ea9
+subroutine show_elem (array)
405ea9
+  integer :: array
405ea9
+
405ea9
+  print *, ""
405ea9
+  print *, "Expected GDB Output:"
405ea9
+  print *, ""
405ea9
+
405ea9
+  write(*, fmt="(A)", advance="no") "GDB = "
405ea9
+  write(*, fmt="(I0)", advance="no") array
405ea9
+  write(*, fmt="(A)", advance="yes") ""
405ea9
+
405ea9
+  print *, ""	! Display Element
405ea9
+end subroutine show_elem
405ea9
+
405ea9
+subroutine show_str (array)
405ea9
+  character (len=*) :: array
405ea9
+
405ea9
+  print *, ""
405ea9
+  print *, "Expected GDB Output:"
405ea9
+  print *, ""
405ea9
+  write (*, fmt="(A)", advance="no") "GDB = '"
405ea9
+  write (*, fmt="(A)", advance="no") array
405ea9
+  write (*, fmt="(A)", advance="yes") "'"
405ea9
+
405ea9
+  print *, ""	! Display String
405ea9
+end subroutine show_str
405ea9
+
405ea9
+subroutine show_1d (array)
405ea9
+  integer, dimension (:) :: array
405ea9
+
405ea9
+  print *, "Array Contents:"
405ea9
+  print *, ""
405ea9
+
405ea9
+  do i=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
+     write(*, fmt="(i4)", advance="no") array (i)
405ea9
+  end do
405ea9
+
405ea9
+  print *, ""
405ea9
+  print *, "Expected GDB Output:"
405ea9
+  print *, ""
405ea9
+
405ea9
+  write(*, fmt="(A)", advance="no") "GDB = ("
405ea9
+  do i=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
+     if (i > LBOUND (array, 1)) then
405ea9
+        write(*, fmt="(A)", advance="no") ", "
405ea9
+     end if
405ea9
+     write(*, fmt="(I0)", advance="no") array (i)
405ea9
+  end do
405ea9
+  write(*, fmt="(A)", advance="no") ")"
405ea9
+
405ea9
+  print *, ""	! Display Array Slice 1D
405ea9
+end subroutine show_1d
405ea9
+
405ea9
+subroutine show_2d (array)
405ea9
   integer, dimension (:,:) :: array
405ea9
 
405ea9
-  print *, message
405ea9
+  print *, "Array Contents:"
405ea9
+  print *, ""
405ea9
+
405ea9
   do i=LBOUND (array, 2), UBOUND (array, 2), 1
405ea9
      do j=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
         write(*, fmt="(i4)", advance="no") array (j, i)
405ea9
      end do
405ea9
      print *, ""
405ea9
- end do
405ea9
- print *, array
405ea9
- print *, ""
405ea9
+  end do
405ea9
 
405ea9
-end subroutine show
405ea9
+  print *, ""
405ea9
+  print *, "Expected GDB Output:"
405ea9
+  print *, ""
405ea9
 
405ea9
-program test
405ea9
+  write(*, fmt="(A)", advance="no") "GDB = ("
405ea9
+  do i=LBOUND (array, 2), UBOUND (array, 2), 1
405ea9
+     if (i > LBOUND (array, 2)) then
405ea9
+        write(*, fmt="(A)", advance="no") " "
405ea9
+     end if
405ea9
+     write(*, fmt="(A)", advance="no") "("
405ea9
+     do j=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
+        if (j > LBOUND (array, 1)) then
405ea9
+           write(*, fmt="(A)", advance="no") ", "
405ea9
+        end if
405ea9
+        write(*, fmt="(I0)", advance="no") array (j, i)
405ea9
+     end do
405ea9
+     write(*, fmt="(A)", advance="no") ")"
405ea9
+  end do
405ea9
+  write(*, fmt="(A)", advance="yes") ")"
405ea9
+
405ea9
+  print *, ""	! Display Array Slice 2D
405ea9
+end subroutine show_2d
405ea9
+
405ea9
+subroutine show_3d (array)
405ea9
+  integer, dimension (:,:,:) :: array
405ea9
+
405ea9
+  print *, ""
405ea9
+  print *, "Expected GDB Output:"
405ea9
+  print *, ""
405ea9
+
405ea9
+  write(*, fmt="(A)", advance="no") "GDB = ("
405ea9
+  do i=LBOUND (array, 3), UBOUND (array, 3), 1
405ea9
+     if (i > LBOUND (array, 3)) then
405ea9
+        write(*, fmt="(A)", advance="no") " "
405ea9
+     end if
405ea9
+     write(*, fmt="(A)", advance="no") "("
405ea9
+     do j=LBOUND (array, 2), UBOUND (array, 2), 1
405ea9
+        if (j > LBOUND (array, 2)) then
405ea9
+           write(*, fmt="(A)", advance="no") " "
405ea9
+        end if
405ea9
+        write(*, fmt="(A)", advance="no") "("
405ea9
+        do k=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
+           if (k > LBOUND (array, 1)) then
405ea9
+              write(*, fmt="(A)", advance="no") ", "
405ea9
+           end if
405ea9
+           write(*, fmt="(I0)", advance="no") array (k, j, i)
405ea9
+        end do
405ea9
+        write(*, fmt="(A)", advance="no") ")"
405ea9
+     end do
405ea9
+     write(*, fmt="(A)", advance="no") ")"
405ea9
+  end do
405ea9
+  write(*, fmt="(A)", advance="yes") ")"
405ea9
+
405ea9
+  print *, ""	! Display Array Slice 3D
405ea9
+end subroutine show_3d
405ea9
+
405ea9
+subroutine show_4d (array)
405ea9
+  integer, dimension (:,:,:,:) :: array
405ea9
+
405ea9
+  print *, ""
405ea9
+  print *, "Expected GDB Output:"
405ea9
+  print *, ""
405ea9
+
405ea9
+  write(*, fmt="(A)", advance="no") "GDB = ("
405ea9
+  do i=LBOUND (array, 4), UBOUND (array, 4), 1
405ea9
+     if (i > LBOUND (array, 4)) then
405ea9
+        write(*, fmt="(A)", advance="no") " "
405ea9
+     end if
405ea9
+     write(*, fmt="(A)", advance="no") "("
405ea9
+     do j=LBOUND (array, 3), UBOUND (array, 3), 1
405ea9
+        if (j > LBOUND (array, 3)) then
405ea9
+           write(*, fmt="(A)", advance="no") " "
405ea9
+        end if
405ea9
+        write(*, fmt="(A)", advance="no") "("
405ea9
+
405ea9
+        do k=LBOUND (array, 2), UBOUND (array, 2), 1
405ea9
+           if (k > LBOUND (array, 2)) then
405ea9
+              write(*, fmt="(A)", advance="no") " "
405ea9
+           end if
405ea9
+           write(*, fmt="(A)", advance="no") "("
405ea9
+           do l=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
+              if (l > LBOUND (array, 1)) then
405ea9
+                 write(*, fmt="(A)", advance="no") ", "
405ea9
+              end if
405ea9
+              write(*, fmt="(I0)", advance="no") array (l, k, j, i)
405ea9
+           end do
405ea9
+           write(*, fmt="(A)", advance="no") ")"
405ea9
+        end do
405ea9
+        write(*, fmt="(A)", advance="no") ")"
405ea9
+     end do
405ea9
+     write(*, fmt="(A)", advance="no") ")"
405ea9
+  end do
405ea9
+  write(*, fmt="(A)", advance="yes") ")"
405ea9
+
405ea9
+  print *, ""	! Display Array Slice 4D
405ea9
+end subroutine show_4d
405ea9
 
405ea9
+!
405ea9
+! Start of test program.
405ea9
+!
405ea9
+program test
405ea9
   interface
405ea9
-     subroutine show (message, array)
405ea9
-       character (len=*) :: message
405ea9
+     subroutine show_str (array)
405ea9
+       character (len=*) :: array
405ea9
+     end subroutine show_str
405ea9
+
405ea9
+     subroutine show_1d (array)
405ea9
+       integer, dimension (:) :: array
405ea9
+     end subroutine show_1d
405ea9
+
405ea9
+     subroutine show_2d (array)
405ea9
        integer, dimension(:,:) :: array
405ea9
-     end subroutine show
405ea9
+     end subroutine show_2d
405ea9
+
405ea9
+     subroutine show_3d (array)
405ea9
+       integer, dimension(:,:,:) :: array
405ea9
+     end subroutine show_3d
405ea9
+
405ea9
+     subroutine show_4d (array)
405ea9
+       integer, dimension(:,:,:,:) :: array
405ea9
+     end subroutine show_4d
405ea9
   end interface
405ea9
 
405ea9
+  ! Declare variables used in this test.
405ea9
+  integer, dimension (-10:-1,-10:-2) :: neg_array
405ea9
   integer, dimension (1:10,1:10) :: array
405ea9
   integer, allocatable :: other (:, :)
405ea9
+  character (len=26) :: str_1 = "abcdefghijklmnopqrstuvwxyz"
405ea9
+  integer, dimension (-2:2,-2:2,-2:2) :: array3d
405ea9
+  integer, dimension (-3:3,7:10,-3:3,-10:-7) :: array4d
405ea9
+  integer, dimension (10:20) :: array1d
405ea9
+  integer, dimension(:,:), pointer :: pointer2d => null()
405ea9
+  integer, dimension(-1:9,-1:9), target :: tarray
405ea9
 
405ea9
+  ! Allocate or associate any variables as needed.
405ea9
   allocate (other (-5:4, -2:7))
405ea9
+  pointer2d => tarray
405ea9
 
405ea9
-  do i=LBOUND (array, 2), UBOUND (array, 2), 1
405ea9
-     do j=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
-        array (j,i) = ((i - 1) * UBOUND (array, 2)) + j
405ea9
-     end do
405ea9
-  end do
405ea9
+  ! Fill arrays with contents ready for testing.
405ea9
+  call fill_array_1d (array1d)
405ea9
+
405ea9
+  call fill_array_2d (neg_array)
405ea9
+  call fill_array_2d (array)
405ea9
+  call fill_array_2d (other)
405ea9
+  call fill_array_2d (tarray)
405ea9
+
405ea9
+  call fill_array_3d (array3d)
405ea9
+  call fill_array_4d (array4d)
405ea9
+
405ea9
+  ! The tests.  Each call to a show_* function must have a unique set
405ea9
+  ! of arguments as GDB uses the arguments are part of the test name
405ea9
+  ! string, so duplicate arguments will result in duplicate test
405ea9
+  ! names.
405ea9
+  !
405ea9
+  ! If a show_* line ends with VARS=... where '...' is a comma
405ea9
+  ! separated list of variable names, these variables are assumed to
405ea9
+  ! be part of the call line, and will be expanded by the test script,
405ea9
+  ! for example:
405ea9
+  !
405ea9
+  !     do x=1,9,1
405ea9
+  !       do y=x,10,1
405ea9
+  !         call show_1d (some_array (x,y))	! VARS=x,y
405ea9
+  !       end do
405ea9
+  !     end do
405ea9
+  !
405ea9
+  ! In this example the test script will automatically expand 'x' and
405ea9
+  ! 'y' in order to better test different aspects of GDB.  Do take
405ea9
+  ! care, the expansion is not very "smart", so try to avoid clashing
405ea9
+  ! with other text on the line, in the example above, avoid variables
405ea9
+  ! named 'some' or 'array', as these will likely clash with
405ea9
+  ! 'some_array'.
405ea9
+  call show_str (str_1)
405ea9
+  call show_str (str_1 (1:20))
405ea9
+  call show_str (str_1 (10:20))
405ea9
 
405ea9
-  do i=LBOUND (other, 2), UBOUND (other, 2), 1
405ea9
-     do j=LBOUND (other, 1), UBOUND (other, 1), 1
405ea9
-        other (j,i) = ((i - 1) * UBOUND (other, 2)) + j
405ea9
+  call show_elem (array1d (11))
405ea9
+  call show_elem (pointer2d (2,3))
405ea9
+
405ea9
+  call show_1d (array1d)
405ea9
+  call show_1d (array1d (13:17))
405ea9
+  call show_1d (array1d (17:13:-1))
405ea9
+  call show_1d (array (1:5,1))
405ea9
+  call show_1d (array4d (1,7,3,:))
405ea9
+  call show_1d (pointer2d (-1:3, 2))
405ea9
+  call show_1d (pointer2d (-1, 2:4))
405ea9
+
405ea9
+  ! Enclosing the array slice argument in (...) causess gfortran to
405ea9
+  ! repack the array.
405ea9
+  call show_1d ((array (1:5,1)))
405ea9
+
405ea9
+  call show_2d (pointer2d)
405ea9
+  call show_2d (array)
405ea9
+  call show_2d (array (1:5,1:5))
405ea9
+  do i=1,10,2
405ea9
+     do j=1,10,3
405ea9
+        call show_2d (array (1:10:i,1:10:j))	! VARS=i,j
405ea9
+        call show_2d (array (10:1:-i,1:10:j))	! VARS=i,j
405ea9
+        call show_2d (array (10:1:-i,10:1:-j))	! VARS=i,j
405ea9
+        call show_2d (array (1:10:i,10:1:-j))	! VARS=i,j
405ea9
      end do
405ea9
   end do
405ea9
+  call show_2d (array (6:2:-1,3:9))
405ea9
+  call show_2d (array (1:10:2, 1:10:2))
405ea9
+  call show_2d (other)
405ea9
+  call show_2d (other (-5:0, -2:0))
405ea9
+  call show_2d (other (-5:4:2, -2:7:3))
405ea9
+  call show_2d (neg_array)
405ea9
+  call show_2d (neg_array (-10:-3,-8:-4:2))
405ea9
+
405ea9
+  ! Enclosing the array slice argument in (...) causess gfortran to
405ea9
+  ! repack the array.
405ea9
+  call show_2d ((array (1:10:3, 1:10:2)))
405ea9
+  call show_2d ((neg_array (-10:-3,-8:-4:2)))
405ea9
 
405ea9
-  call show ("array", array)
405ea9
-  call show ("array (1:5,1:5)", array (1:5,1:5))
405ea9
-  call show ("array (1:10:2,1:10:2)", array (1:10:2,1:10:2))
405ea9
-  call show ("array (1:10:3,1:10:2)", array (1:10:3,1:10:2))
405ea9
-  call show ("array (1:10:5,1:10:3)", array (1:10:4,1:10:3))
405ea9
+  call show_3d (array3d)
405ea9
+  call show_3d (array3d(-1:1,-1:1,-1:1))
405ea9
+  call show_3d (array3d(1:-1:-1,1:-1:-1,1:-1:-1))
405ea9
 
405ea9
-  call show ("other", other)
405ea9
-  call show ("other (-5:0, -2:0)", other (-5:0, -2:0))
405ea9
-  call show ("other (-5:4:2, -2:7:3)", other (-5:4:2, -2:7:3))
405ea9
+  ! Enclosing the array slice argument in (...) causess gfortran to
405ea9
+  ! repack the array.
405ea9
+  call show_3d ((array3d(1:-1:-1,1:-1:-1,1:-1:-1)))
405ea9
 
405ea9
+  call show_4d (array4d)
405ea9
+  call show_4d (array4d (-3:0,10:7:-1,0:3,-7:-10:-1))
405ea9
+  call show_4d (array4d (3:0:-1, 10:7:-1, :, -7:-10:-1))
405ea9
+
405ea9
+  ! Enclosing the array slice argument in (...) causess gfortran to
405ea9
+  ! repack the array.
405ea9
+  call show_4d ((array4d (3:-2:-2, 10:7:-2, :, -7:-10:-1)))
405ea9
+
405ea9
+  ! All done.  Deallocate.
405ea9
   deallocate (other)
405ea9
+
405ea9
+  ! GDB catches this final breakpoint to indicate the end of the test.
405ea9
   print *, "" ! Final Breakpoint.
405ea9
+
405ea9
+contains
405ea9
+
405ea9
+  ! Fill a 1D array with a unique positive integer in each element.
405ea9
+  subroutine fill_array_1d (array)
405ea9
+    integer, dimension (:) :: array
405ea9
+    integer :: counter
405ea9
+
405ea9
+    counter = 1
405ea9
+    do j=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
+       array (j) = counter
405ea9
+       counter = counter + 1
405ea9
+    end do
405ea9
+  end subroutine fill_array_1d
405ea9
+
405ea9
+  ! Fill a 2D array with a unique positive integer in each element.
405ea9
+  subroutine fill_array_2d (array)
405ea9
+    integer, dimension (:,:) :: array
405ea9
+    integer :: counter
405ea9
+
405ea9
+    counter = 1
405ea9
+    do i=LBOUND (array, 2), UBOUND (array, 2), 1
405ea9
+       do j=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
+          array (j,i) = counter
405ea9
+          counter = counter + 1
405ea9
+       end do
405ea9
+    end do
405ea9
+  end subroutine fill_array_2d
405ea9
+
405ea9
+  ! Fill a 3D array with a unique positive integer in each element.
405ea9
+  subroutine fill_array_3d (array)
405ea9
+    integer, dimension (:,:,:) :: array
405ea9
+    integer :: counter
405ea9
+
405ea9
+    counter = 1
405ea9
+    do i=LBOUND (array, 3), UBOUND (array, 3), 1
405ea9
+       do j=LBOUND (array, 2), UBOUND (array, 2), 1
405ea9
+          do k=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
+             array (k, j,i) = counter
405ea9
+             counter = counter + 1
405ea9
+          end do
405ea9
+       end do
405ea9
+    end do
405ea9
+  end subroutine fill_array_3d
405ea9
+
405ea9
+  ! Fill a 4D array with a unique positive integer in each element.
405ea9
+  subroutine fill_array_4d (array)
405ea9
+    integer, dimension (:,:,:,:) :: array
405ea9
+    integer :: counter
405ea9
+
405ea9
+    counter = 1
405ea9
+    do i=LBOUND (array, 4), UBOUND (array, 4), 1
405ea9
+       do j=LBOUND (array, 3), UBOUND (array, 3), 1
405ea9
+          do k=LBOUND (array, 2), UBOUND (array, 2), 1
405ea9
+             do l=LBOUND (array, 1), UBOUND (array, 1), 1
405ea9
+                array (l, k, j,i) = counter
405ea9
+                counter = counter + 1
405ea9
+             end do
405ea9
+          end do
405ea9
+       end do
405ea9
+    end do
405ea9
+    print *, ""
405ea9
+  end subroutine fill_array_4d
405ea9
 end program test
405ea9
diff --git a/gdb/testsuite/gdb.fortran/vla-sizeof.exp b/gdb/testsuite/gdb.fortran/vla-sizeof.exp
405ea9
--- a/gdb/testsuite/gdb.fortran/vla-sizeof.exp
405ea9
+++ b/gdb/testsuite/gdb.fortran/vla-sizeof.exp
405ea9
@@ -44,7 +44,7 @@ gdb_continue_to_breakpoint "vla1-allocated"
405ea9
 gdb_test "print sizeof(vla1)" " = 4000" "print sizeof allocated vla1"
405ea9
 gdb_test "print sizeof(vla1(3,2,1))" "4" \
405ea9
     "print sizeof element from allocated vla1"
405ea9
-gdb_test "print sizeof(vla1(3:4,2,1))" "800" \
405ea9
+gdb_test "print sizeof(vla1(3:4,2,1))" "8" \
405ea9
     "print sizeof sliced vla1"
405ea9
 
405ea9
 # Try to access values in undefined pointer to VLA (dangling)
405ea9
@@ -61,7 +61,7 @@ gdb_continue_to_breakpoint "pvla-associated"
405ea9
 gdb_test "print sizeof(pvla)" " = 4000" "print sizeof associated pvla"
405ea9
 gdb_test "print sizeof(pvla(3,2,1))" "4" \
405ea9
     "print sizeof element from associated pvla"
405ea9
-gdb_test "print sizeof(pvla(3:4,2,1))" "800" "print sizeof sliced pvla"
405ea9
+gdb_test "print sizeof(pvla(3:4,2,1))" "8" "print sizeof sliced pvla"
405ea9
 
405ea9
 gdb_breakpoint [gdb_get_line_number "vla1-neg-bounds-v1"]
405ea9
 gdb_continue_to_breakpoint "vla1-neg-bounds-v1"