Blame SOURCES/valgrind-3.17.0-ppc64-isa-3.1.patch

39285c
commit 3cc0232c46a5905b4a6c2fbd302b58bf5f90b3d5
39285c
Author: Carl Love <cel@us.ibm.com>
39285c
Date:   Mon Jan 11 16:00:57 2021 -0600
39285c
39285c
    PPC64: ISA 3.1 VSX PCV Generate Operations
39285c
    
39285c
    xgenpcvbm VSX Vector Generate PCV from Byte Mask
39285c
    xxgenpcvdmVSX Vector Generate PCV from Doubleword Mask
39285c
    xxgenpcvhmVSX Vector Generate PCV from Halfword Mask
39285c
    xxgenpcvwmVSX Vector Generate PCV from Word Mask
39285c
39285c
diff --git a/VEX/priv/guest_ppc_defs.h b/VEX/priv/guest_ppc_defs.h
39285c
index deda4dfce..54ce923a9 100644
39285c
--- a/VEX/priv/guest_ppc_defs.h
39285c
+++ b/VEX/priv/guest_ppc_defs.h
39285c
@@ -169,6 +169,23 @@ void write_ACC_entry (VexGuestPPC64State* gst, UInt offset, UInt acc,
39285c
 void get_ACC_entry (VexGuestPPC64State* gst, UInt offset, UInt acc,
39285c
                     UInt reg, UInt *result);
39285c
 
39285c
+extern void vector_gen_pvc_byte_mask_dirty_helper( VexGuestPPC64State* gst,
39285c
+                                                   ULong src_hi,
39285c
+                                                   ULong src_lo,
39285c
+                                                   UInt rtn_val, UInt IMM );
39285c
+extern void vector_gen_pvc_hword_mask_dirty_helper( VexGuestPPC64State* gst,
39285c
+                                                    ULong src_hi,
39285c
+                                                    ULong src_lo,
39285c
+                                                    UInt rtn_val, UInt IMM );
39285c
+extern void vector_gen_pvc_word_mask_dirty_helper( VexGuestPPC64State* gst,
39285c
+                                                   ULong src_hi,
39285c
+                                                   ULong src_lo,
39285c
+                                                   UInt rtn_val, UInt IMM );
39285c
+extern void vector_gen_pvc_dword_mask_dirty_helper( VexGuestPPC64State* gst,
39285c
+                                                    ULong src_hi,
39285c
+                                                    ULong src_lo,
39285c
+                                                    UInt rtn_val, UInt IMM );
39285c
+
39285c
 /* 8-bit XO value from instruction description */
39285c
 #define XVI4GER8       0b00100011
39285c
 #define XVI4GER8PP     0b00100010
39285c
diff --git a/VEX/priv/guest_ppc_helpers.c b/VEX/priv/guest_ppc_helpers.c
39285c
index c24191ef3..75497abb9 100644
39285c
--- a/VEX/priv/guest_ppc_helpers.c
39285c
+++ b/VEX/priv/guest_ppc_helpers.c
39285c
@@ -701,6 +701,738 @@ ULong vector_evaluate64_helper( ULong srcA, ULong srcB, ULong srcC,
39285c
 #undef MAX_IMM_BITS
39285c
 }
39285c
 
39285c
+/*--------------------------------------------------*/
39285c
+/*---- VSX Vector Generate PCV from Mask helpers ---*/
39285c
+/*--------------------------------------------------*/
39285c
+static void write_VSX_entry (VexGuestPPC64State* gst, UInt reg_offset,
39285c
+                             ULong *vsx_entry)
39285c
+{
39285c
+   U128* pU128_dst;
39285c
+   pU128_dst = (U128*) (((UChar*) gst) + reg_offset);
39285c
+
39285c
+   /* The U128 type is defined as an array of unsigned intetgers.  */
39285c
+   /* Writing in LE order */
39285c
+   (*pU128_dst)[0] = (UInt)(vsx_entry[1] & 0xFFFFFFFF);
39285c
+   (*pU128_dst)[1] = (UInt)(vsx_entry[1] >> 32);
39285c
+   (*pU128_dst)[2] = (UInt)(vsx_entry[0] & 0xFFFFFFFF);
39285c
+   (*pU128_dst)[3] = (UInt)(vsx_entry[0] >> 32);
39285c
+   return;
39285c
+}
39285c
+
39285c
+/* CALLED FROM GENERATED CODE */
39285c
+void vector_gen_pvc_byte_mask_dirty_helper( VexGuestPPC64State* gst,
39285c
+                                            ULong src_hi, ULong src_lo,
39285c
+                                            UInt reg_offset, UInt imm ) {
39285c
+   /* The function computes the 128-bit result then writes it directly
39285c
+      into the guest state VSX register.  */
39285c
+
39285c
+   UInt  i, shift_by, sel_shift_by, half_sel;
39285c
+   ULong index, src, result[2];
39285c
+   ULong j;
39285c
+
39285c
+   result[0] = 0;
39285c
+   result[1] = 0;
39285c
+   j = 0;
39285c
+
39285c
+   /* The algorithm in the ISA is written with IBM numbering zero on left and
39285c
+      N-1 on right. The loop index is converted to "i" to match the algorithm
39285c
+      for claritiy of matching the C code to the algorithm in the ISA.  */
39285c
+
39285c
+   if (imm == 0b00) {    // big endian expansion
39285c
+      for( index = 0; index < 16; index++) {
39285c
+         i = 15 - index;
39285c
+
39285c
+         shift_by = i*8;
39285c
+
39285c
+         if ( i >= 8) {
39285c
+            src = src_hi;
39285c
+            shift_by = shift_by - 64;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = shift_by + 7;
39285c
+
39285c
+         if ( ((src >> sel_shift_by) & 0x1) == 1) {
39285c
+               result[half_sel] |= j << shift_by;
39285c
+            j++;
39285c
+         } else {
39285c
+            result[half_sel] |= (index + (unsigned long long)0x10) << shift_by;
39285c
+         }
39285c
+      }
39285c
+
39285c
+
39285c
+   } else if (imm == 0b01) {    // big endian compression
39285c
+      /* If IMM=0b00001, let pcv be the permute control vector required to
39285c
+         enable a left-indexed permute (vperm or xxperm) to implement a
39285c
+         compression of the sparse byte elements in a source vector specified
39285c
+         by the byte-element mask in VSR[VRB+32] into the leftmost byte
39285c
+         elements of a result vector.
39285c
+      */
39285c
+      for( index = 0; index < 16; index++) {
39285c
+         i = 15 - index;
39285c
+         shift_by = i*8;
39285c
+
39285c
+         if ( i >= 8) {
39285c
+            src = src_hi;
39285c
+            shift_by = shift_by - 64;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = shift_by + 7;
39285c
+
39285c
+         if ( ((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            if (j >= 8)
39285c
+               result[1] |= (index) << (15 - j)*8;
39285c
+            else
39285c
+               result[0] |= (index) << (7 - j)*8;
39285c
+            j++;
39285c
+         }
39285c
+      }
39285c
+      /* The algorithim says set to undefined, leave as 0
39285c
+      for( index = 3 - j; index < 4; index++) {
39285c
+         result |= (0 << (index*8));
39285c
+      }
39285c
+      */
39285c
+
39285c
+   } else if (imm == 0b10) {   //little-endian expansion
39285c
+      /* If IMM=0b00010, let pcv be the permute control vector required to
39285c
+         enable a right-indexed permute (vpermr or xxpermr) to implement an
39285c
+         expansion of the rightmost byte elements of a source vector into the
39285c
+         byte elements of a result vector specified by the byte-element mask
39285c
+         in VSR[VRB+32].  */
39285c
+      for( index = 0; index < 16; index++) {
39285c
+         i = index;
39285c
+
39285c
+         shift_by = i*8;
39285c
+
39285c
+         if ( i >= 8) {
39285c
+            src = src_hi;
39285c
+            shift_by = shift_by - 64;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = shift_by + 7;
39285c
+
39285c
+         /* mod shift amount by 8 since src is either the upper or lower
39285c
+            64-bits.  */
39285c
+         if ( ((src >> sel_shift_by) & 0x1) == 1) {
39285c
+               result[half_sel] |= j << shift_by;
39285c
+            j++;
39285c
+         } else {
39285c
+            result[half_sel] |= (index + (unsigned long long)0x10) << shift_by;
39285c
+         }
39285c
+      }
39285c
+
39285c
+   } else if (imm == 0b11) {   //little-endian compression
39285c
+      /* If IMM=0b00011, let pcv be the permute control vector required to
39285c
+         enable a right-indexed permute (vpermr or xxpermr) to implement a
39285c
+         compression of the sparse byte elements in a source vector specified
39285c
+         by the byte-element mask in VSR[VRB+32] into the rightmost byte
39285c
+         elements of a result vector.  */
39285c
+
39285c
+      for( index = 0; index < 16; index++) {
39285c
+         i = index;
39285c
+
39285c
+         shift_by = i*8;
39285c
+
39285c
+         if ( i >= 8) {
39285c
+            src = src_hi;
39285c
+            shift_by = shift_by - 64;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = shift_by + 7;
39285c
+
39285c
+         if ( ((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            if (j >= 8)
39285c
+               result[0] |= (index) << (j-8)*8;
39285c
+            else
39285c
+               result[1] |= (index) << j*8;
39285c
+            j++;
39285c
+         }
39285c
+      }
39285c
+
39285c
+      /* The algorithim says set to undefined, leave as 0
39285c
+      for( index = 3 - j; index < 4; index++) {
39285c
+         result |= (0 << (index*8));
39285c
+      }
39285c
+      */
39285c
+
39285c
+   } else {
39285c
+      vex_printf("ERROR, vector_gen_pvc_byte_mask_dirty_helper, imm value %u not supported.\n",
39285c
+                 imm);
39285c
+      vassert(0);
39285c
+   }
39285c
+   write_VSX_entry( gst, reg_offset, result);
39285c
+}
39285c
+
39285c
+/* CALLED FROM GENERATED CODE */
39285c
+void vector_gen_pvc_hword_mask_dirty_helper( VexGuestPPC64State* gst,
39285c
+                                             ULong src_hi, ULong src_lo,
39285c
+                                             UInt reg_offset,
39285c
+                                             UInt imm ) {
39285c
+   /* The function computes the 128-bit result then writes it directly
39285c
+      into the guest state VSX register.  */
39285c
+   UInt  i, shift_by, sel_shift_by, half_sel;
39285c
+   ULong index, src, result[2];
39285c
+   ULong j;
39285c
+
39285c
+   result[0] = 0;
39285c
+   result[1] = 0;
39285c
+   j = 0;
39285c
+
39285c
+   /* The algorithm in the ISA is written with IBM numbering zero on left and
39285c
+      N-1 on right. The loop index is converted to "i" to match the algorithm
39285c
+      for claritiy of matching the C code to the algorithm in the ISA.  */
39285c
+
39285c
+   if (imm == 0b00) {    // big endian expansion
39285c
+      /* If IMM=0b00000, let pcv be the permute control vector required to
39285c
+         enable a left-indexed permute (vperm or xxperm) to implement an
39285c
+         expansion of the leftmost halfword elements of a source vector into
39285c
+         the halfword elements of a result vector specified by the halfword-
39285c
+         element mask in VSR[VRB+32].
39285c
+      */
39285c
+      for( index = 0; index < 8; index++) {
39285c
+         i = 7 - index;
39285c
+
39285c
+         shift_by = i*16;
39285c
+
39285c
+         if ( i >= 4) {
39285c
+            src = src_hi;
39285c
+            shift_by = shift_by - 64;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = shift_by + 15;
39285c
+
39285c
+         if ( ((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            // half-word i, byte 0
39285c
+            result[half_sel] |= (2*j + 0x0) << (shift_by+8);
39285c
+            // half-word i, byte 1
39285c
+            result[half_sel] |= (2*j + 0x1) << shift_by;
39285c
+            j++;
39285c
+         } else {
39285c
+            result[half_sel] |= (2*index + 0x10) << (shift_by+8);
39285c
+            result[half_sel] |= (2*index + 0x11) << shift_by;
39285c
+         }
39285c
+      }
39285c
+
39285c
+   } else if (imm == 0b01) {    // big endian expansion
39285c
+      /* If IMM=0b00001,let pcv be the permute control vector required to
39285c
+         enable a left-indexed permute (vperm or xxperm) to implement a
39285c
+         compression of the sparse halfword elements in a source vector
39285c
+         specified by the halfword-element mask in VSR[VRB+32] into the
39285c
+         leftmost halfword elements of a result vector.
39285c
+      */
39285c
+      for( index = 0; index < 8; index++) {
39285c
+         i = 7 - index;
39285c
+
39285c
+         shift_by = i*16;
39285c
+
39285c
+         if ( i >= 4) {
39285c
+            src = src_hi;
39285c
+            shift_by = shift_by - 64;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = shift_by + 15;
39285c
+
39285c
+         if ( ((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            if (j >= 4) {
39285c
+               // half-word i, byte 0
39285c
+               result[1] |= (2*index + 0x0) << ((7 - j)*16 + 8);
39285c
+               // half-word i, byte 1
39285c
+               result[1] |= (2*index + 0x1) << ((7 - j)*16);
39285c
+            } else {
39285c
+               // half-word i, byte 0
39285c
+               result[0] |= (2*index + 0x0) << ((3 - j)*16 + 8);
39285c
+               // half-word i, byte 1
39285c
+               result[0] |= (2*index + 0x1) << ((3 - j)*16);
39285c
+            }
39285c
+            j++;
39285c
+         }
39285c
+      }
39285c
+
39285c
+   } else if (imm == 0b10) {   //little-endian expansion
39285c
+      /* If IMM=0b00010, let pcv be the permute control vector required to
39285c
+         enable a right-indexed permute (vpermr or xxpermr) to implement an
39285c
+         expansion of the rightmost halfword elements of a source vector into
39285c
+         the halfword elements of a result vector specified by the halfword-
39285c
+         element mask in VSR[VRB+32].
39285c
+       */
39285c
+      for( index = 0; index < 8; index++) {
39285c
+         i = index;
39285c
+         shift_by = i*16;
39285c
+
39285c
+         if ( i >= 4) {
39285c
+            src = src_hi;
39285c
+            shift_by = shift_by - 64;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = shift_by + 15;
39285c
+
39285c
+         if ( ((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            // half-word i, byte 0
39285c
+            result[half_sel] |= (2*j + 0x00) << shift_by;
39285c
+            // half-word i, byte 1
39285c
+            result[half_sel] |= (2*j + 0x01) << (shift_by+8);
39285c
+            j++;
39285c
+
39285c
+         } else {
39285c
+            // half-word i, byte 0
39285c
+            result[half_sel] |= (2*index + 0x10) << shift_by;
39285c
+            // half-word i, byte 1
39285c
+            result[half_sel] |= (2*index + 0x11) << (shift_by+8);
39285c
+         }
39285c
+      }
39285c
+
39285c
+   } else if (imm == 0b11) {   //little-endian compression
39285c
+      /* If IMM=0b00011, let pcv be the permute control vector required to
39285c
+         enable a right-indexed permute (vpermr or xxpermr) to implement a
39285c
+         compression of the sparse halfword elements in a source vector
39285c
+         specified by the halfword-element mask in VSR[VRB+32] into the
39285c
+         rightmost halfword elements of a result vector.  */
39285c
+      for( index = 0; index < 8; index++) {
39285c
+         i = index;
39285c
+         shift_by = i*16;
39285c
+
39285c
+         if ( i >= 4) {
39285c
+            src = src_hi;
39285c
+            shift_by = shift_by - 64;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = shift_by + 15;
39285c
+
39285c
+         if ( ((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            if (j >= 4) {
39285c
+               // half-word j, byte 0
39285c
+               result[0] |= (2*index + 0x0) << ((j-4)*16);
39285c
+               // half-word j, byte 1
39285c
+               result[0] |= (2*index + 0x1) << ((j-4)*16+8);
39285c
+            } else {
39285c
+               // half-word j, byte 0
39285c
+               result[1] |= (2*index + 0x0) << (j*16);
39285c
+               // half-word j, byte 1
39285c
+               result[1] |= (2*index + 0x1) << ((j*16)+8);
39285c
+            }
39285c
+            j++;
39285c
+         }
39285c
+      }
39285c
+
39285c
+   } else {
39285c
+      vex_printf("ERROR, vector_gen_pvc_hword_dirty_mask_helper, imm value %u not supported.\n",
39285c
+                 imm);
39285c
+      vassert(0);
39285c
+   }
39285c
+   write_VSX_entry( gst, reg_offset, result);
39285c
+}
39285c
+
39285c
+/* CALLED FROM GENERATED CODE */
39285c
+void vector_gen_pvc_word_mask_dirty_helper( VexGuestPPC64State* gst,
39285c
+                                            ULong src_hi, ULong src_lo,
39285c
+                                            UInt reg_offset, UInt imm ) {
39285c
+   /* The function computes the 128-bit result then writes it directly
39285c
+      into the guest state VSX register.  */
39285c
+   UInt  i, shift_by, sel_shift_by, half_sel;
39285c
+   ULong index, src, result[2];
39285c
+   ULong j;
39285c
+
39285c
+   result[0] = 0;
39285c
+   result[1] = 0;
39285c
+   j = 0;
39285c
+
39285c
+   /* The algorithm in the ISA is written with IBM numbering zero on left and
39285c
+      N-1 on right. The loop index is converted to "i" to match the algorithm
39285c
+      for claritiy of matching the C code to the algorithm in the ISA.  */
39285c
+
39285c
+   if (imm == 0b00) {    // big endian expansion
39285c
+      /* If IMM=0b00000, let pcv be the permute control vector required to
39285c
+         enable a left-indexed permute (vperm or xxperm) to implement an
39285c
+         expansion of the leftmost word elements of a source vector into the
39285c
+         word elements of a result vector specified by the word-element mask
39285c
+         in VSR[VRB+32].
39285c
+      */
39285c
+      for( index = 0; index < 4; index++) {
39285c
+         i = 3 - index;
39285c
+
39285c
+         shift_by = i*32;
39285c
+
39285c
+         if ( i >= 2) {
39285c
+            src = src_hi;
39285c
+            shift_by = shift_by - 64;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = shift_by + 31;
39285c
+
39285c
+         if ( ((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            result[half_sel] |= (4*j+0) << (shift_by+24);  // word i, byte 0
39285c
+            result[half_sel] |= (4*j+1) << (shift_by+16);  // word i, byte 1
39285c
+            result[half_sel] |= (4*j+2) << (shift_by+8);   // word i, byte 2
39285c
+            result[half_sel] |= (4*j+3) << shift_by;       // word i, byte 3
39285c
+            j++;
39285c
+         } else {
39285c
+            result[half_sel] |= (4*index + 0x10) << (shift_by+24);
39285c
+            result[half_sel] |= (4*index + 0x11) << (shift_by+16);
39285c
+            result[half_sel] |= (4*index + 0x12) << (shift_by+8);
39285c
+            result[half_sel] |= (4*index + 0x13) << shift_by;
39285c
+         }
39285c
+      }
39285c
+
39285c
+   } else if (imm == 0b01) {    // big endian compression
39285c
+      /* If IMM=0b00001, let pcv be the permute control vector required to
39285c
+         enable a left-indexed permute (vperm or xxperm) to implement a
39285c
+         compression of the sparse word elements in a source vector specified
39285c
+         by the word-element mask in VSR[VRB+32] into the leftmost word
39285c
+         elements of a result vector.
39285c
+      */
39285c
+      for( index = 0; index < 4; index++) {
39285c
+         i = 3 - index;
39285c
+
39285c
+         shift_by = i*32;
39285c
+
39285c
+         if ( i >= 2) {
39285c
+            src = src_hi;
39285c
+            shift_by = shift_by - 64;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = shift_by + 31;
39285c
+
39285c
+         if (((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            if (j >= 2) {
39285c
+               // word j, byte 0
39285c
+               result[1] |= (4*index+0) << ((3 - j)*32 + 24);
39285c
+               // word j, byte 1
39285c
+               result[1] |= (4*index+1) << ((3 - j)*32 + 16);
39285c
+               // word j, byte 2
39285c
+               result[1] |= (4*index+2) << ((3 - j)*32 + 8);
39285c
+               // word j, byte 3
39285c
+               result[1] |= (4*index+3) << ((3 - j)*32 + 0);
39285c
+            } else {
39285c
+               result[0] |= (4*index+0) << ((1 - j)*32 + 24);
39285c
+               result[0] |= (4*index+1) << ((1 - j)*32 + 16);
39285c
+               result[0] |= (4*index+2) << ((1 - j)*32 + 8);
39285c
+               result[0] |= (4*index+3) << ((1 - j)*32 + 0);
39285c
+            }
39285c
+            j++;
39285c
+         }
39285c
+      }
39285c
+
39285c
+   } else if (imm == 0b10) {   //little-endian expansion
39285c
+      /* If IMM=0b00010, let pcv be the permute control vector required to
39285c
+         enable a right-indexed permute (vpermr or xxpermr) to implement an
39285c
+         expansion of the rightmost word elements of a source vector into the
39285c
+         word elements of a result vector specified by the word-element mask
39285c
+         in VSR[VRB+32].
39285c
+       */
39285c
+      for( index = 0; index < 4; index++) {
39285c
+         i = index;
39285c
+
39285c
+         shift_by = i*32;
39285c
+
39285c
+         if ( i >= 2) {
39285c
+            src = src_hi;
39285c
+            shift_by = shift_by - 64;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = shift_by + 31;
39285c
+
39285c
+         if (((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            result[half_sel] |= (4*j+0) << (shift_by + 0);  // word j, byte 0
39285c
+            result[half_sel] |= (4*j+1) << (shift_by + 8);  // word j, byte 1
39285c
+            result[half_sel] |= (4*j+2) << (shift_by + 16); // word j, byte 2
39285c
+            result[half_sel] |= (4*j+3) << (shift_by + 24); // word j, byte 3
39285c
+            j++;
39285c
+         } else {
39285c
+            result[half_sel] |= (4*index + 0x10) << (shift_by + 0);
39285c
+            result[half_sel] |= (4*index + 0x11) << (shift_by + 8);
39285c
+            result[half_sel] |= (4*index + 0x12) << (shift_by + 16);
39285c
+            result[half_sel] |= (4*index + 0x13) << (shift_by + 24);
39285c
+         }
39285c
+      }
39285c
+
39285c
+   } else if (imm == 0b11) {   //little-endian compression
39285c
+      /* If IMM=0b00011, let pcv be the permute control vector required to
39285c
+         enable a right-indexed permute (vpermr or xxpermr) to implement a
39285c
+         compression of the sparse word elements in a source vector specified
39285c
+         by the word-element mask in VSR[VRB+32] into the rightmost word
39285c
+         elements of a result vector.  */
39285c
+      for( index = 0; index < 4; index++) {
39285c
+         i =index;
39285c
+
39285c
+         shift_by = i*32;
39285c
+
39285c
+         if ( i >= 2) {
39285c
+            src = src_hi;
39285c
+            shift_by = shift_by - 64;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = shift_by + 31;
39285c
+
39285c
+         if (((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            if (j >= 2){
39285c
+               // word j, byte 0
39285c
+               result[0] |= (4*index + 0x0) << ((j-2)*32+0);
39285c
+               // word j, byte 1
39285c
+               result[0] |= (4*index + 0x1) << ((j-2)*32+8);
39285c
+               // word j, byte 2
39285c
+               result[0] |= (4*index + 0x2) << ((j-2)*32+16);
39285c
+               // word j, byte 3
39285c
+               result[0] |= (4*index + 0x3) << ((j-2)*32+24);
39285c
+            } else {
39285c
+               result[1] |= (4*index + 0x0) << (j*32+0);
39285c
+               result[1] |= (4*index + 0x1) << (j*32+8);
39285c
+               result[1] |= (4*index + 0x2) << (j*32+16);
39285c
+               result[1] |= (4*index + 0x3) << (j*32+24);
39285c
+            }
39285c
+            j++;
39285c
+         }
39285c
+      }
39285c
+   } else {
39285c
+      vex_printf("ERROR, vector_gen_pvc_word_mask_dirty_helper, imm value %u not supported.\n",
39285c
+                 imm);
39285c
+      vassert(0);
39285c
+   }
39285c
+
39285c
+   write_VSX_entry( gst, reg_offset, result);
39285c
+}
39285c
+
39285c
+/* CALLED FROM GENERATED CODE */
39285c
+void vector_gen_pvc_dword_mask_dirty_helper( VexGuestPPC64State* gst,
39285c
+                                             ULong src_hi, ULong src_lo,
39285c
+                                             UInt reg_offset, UInt imm ) {
39285c
+   /* The function computes the 128-bit result then writes it directly
39285c
+      into the guest state VSX register.  */
39285c
+   UInt  sel_shift_by, half_sel;
39285c
+   ULong index, src, result[2];
39285c
+   ULong j, i;
39285c
+
39285c
+   result[0] = 0;
39285c
+   result[1] = 0;
39285c
+   j = 0;
39285c
+
39285c
+   /* The algorithm in the ISA is written with IBM numbering zero on left and
39285c
+      N-1 on right. The loop index is converted to "i" to match the algorithm
39285c
+      for claritiy of matching the C code to the algorithm in the ISA.  */
39285c
+
39285c
+   if (imm == 0b00) {    // big endian expansion
39285c
+      /* If IMM=0b00000, let pcv be the permute control vector required to
39285c
+         enable a left-indexed permute (vperm or xxperm) to implement an
39285c
+         expansion of the leftmost doubleword elements of a source vector into
39285c
+         the doubleword elements of a result vector specified by the
39285c
+         doubleword-element mask in VSR[VRB+32].
39285c
+      */
39285c
+      for( index = 0; index < 2; index++) {
39285c
+         i = 1 - index;
39285c
+
39285c
+         if ( i == 1) {
39285c
+            src = src_hi;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = 63;
39285c
+
39285c
+         if ( ((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            result[half_sel] |= (8*j + 0x0) << 56; // dword i, byte 0
39285c
+            result[half_sel] |= (8*j + 0x1) << 48; // dword i, byte 1
39285c
+            result[half_sel] |= (8*j + 0x2) << 40; // dword i, byte 2
39285c
+            result[half_sel] |= (8*j + 0x3) << 32; // dword i, byte 3
39285c
+            result[half_sel] |= (8*j + 0x4) << 24; // dword i, byte 4
39285c
+            result[half_sel] |= (8*j + 0x5) << 16; // dword i, byte 5
39285c
+            result[half_sel] |= (8*j + 0x6) << 8;  // dword i, byte 6
39285c
+            result[half_sel] |= (8*j + 0x7) << 0;  // dword i, byte 7
39285c
+            j++;
39285c
+         } else {
39285c
+            result[half_sel] |= (8*index + 0x10) << 56;
39285c
+            result[half_sel] |= (8*index + 0x11) << 48;
39285c
+            result[half_sel] |= (8*index + 0x12) << 40;
39285c
+            result[half_sel] |= (8*index + 0x13) << 32;
39285c
+            result[half_sel] |= (8*index + 0x14) << 24;
39285c
+            result[half_sel] |= (8*index + 0x15) << 16;
39285c
+            result[half_sel] |= (8*index + 0x16) << 8;
39285c
+            result[half_sel] |= (8*index + 0x17) << 0;
39285c
+         }
39285c
+      }
39285c
+   } else if (imm == 0b01) {    // big endian compression
39285c
+      /* If IMM=0b00001, let pcv be the the permute control vector required to
39285c
+         enable a left-indexed permute (vperm or xxperm) to implement a
39285c
+         compression of the sparse doubleword elements in a source vector
39285c
+         specified by the doubleword-element mask in VSR[VRB+32] into the
39285c
+         leftmost doubleword elements of a result vector.
39285c
+      */
39285c
+      for( index = 0; index < 2; index++) {
39285c
+         i = 1 - index;
39285c
+
39285c
+         if ( i == 1) {
39285c
+            src = src_hi;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = 63;
39285c
+
39285c
+         if ( ((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            if (j == 1) {
39285c
+               result[1] |= (8*index + 0x0) << 56;   // double-word j, byte 0
39285c
+               result[1] |= (8*index + 0x1) << 48;   // double-word j, byte 1
39285c
+               result[1] |= (8*index + 0x2) << 40;   // double-word j, byte 2
39285c
+               result[1] |= (8*index + 0x3) << 32;   // double-word j, byte 3
39285c
+               result[1] |= (8*index + 0x4) << 24;   // double-word j, byte 4
39285c
+               result[1] |= (8*index + 0x5) << 16;   // double-word j, byte 5
39285c
+               result[1] |= (8*index + 0x6) << 8;    // double-word j, byte 6
39285c
+               result[1] |= (8*index + 0x7) << 0;    // double-word j, byte 7
39285c
+            } else {
39285c
+               result[0] |= (8*index + 0x0) << 56;   // double-word j, byte 0
39285c
+               result[0] |= (8*index + 0x1) << 48;   // double-word j, byte 1
39285c
+               result[0] |= (8*index + 0x2) << 40;   // double-word j, byte 2
39285c
+               result[0] |= (8*index + 0x3) << 32;   // double-word j, byte 3
39285c
+               result[0] |= (8*index + 0x4) << 24;   // double-word j, byte 4
39285c
+               result[0] |= (8*index + 0x5) << 16;   // double-word j, byte 5
39285c
+               result[0] |= (8*index + 0x6) << 8;    // double-word j, byte 6
39285c
+               result[0] |= (8*index + 0x7) << 0;    // double-word j, byte 7
39285c
+            }
39285c
+            j++;
39285c
+         }
39285c
+      }
39285c
+   } else if (imm == 0b10) {   //little-endian expansion
39285c
+      /* If IMM=0b00010, let pcv be the permute control vector required to
39285c
+         enable a right-indexed permute (vpermr or xxpermr) to implement an
39285c
+         expansion of the rightmost doubleword elements of a source vector
39285c
+         into the doubleword elements of a result vector specified by the
39285c
+         doubleword-element mask in VSR[VRB+32].
39285c
+       */
39285c
+
39285c
+      for( index = 0; index < 2; index++) {
39285c
+         i = index;
39285c
+
39285c
+         if ( i == 1) {
39285c
+            src = src_hi;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = 63;
39285c
+
39285c
+         if ( ((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            result[half_sel] |= (8*j+0) << 0;  // double-word i, byte 0
39285c
+            result[half_sel] |= (8*j+1) << 8;  // double-word i, byte 1
39285c
+            result[half_sel] |= (8*j+2) << 16; // double-word i, byte 2
39285c
+            result[half_sel] |= (8*j+3) << 24; // double-word i, byte 3
39285c
+            result[half_sel] |= (8*j+4) << 32; // double-word i, byte 4
39285c
+            result[half_sel] |= (8*j+5) << 40; // double-word i, byte 5
39285c
+            result[half_sel] |= (8*j+6) << 48; // double-word i, byte 6
39285c
+            result[half_sel] |= (8*j+7) << 56; // double-word i, byte 7
39285c
+            j++;
39285c
+         } else {
39285c
+            result[half_sel] |= (8*index + 0x10) << 0;
39285c
+            result[half_sel] |= (8*index + 0x11) << 8;
39285c
+            result[half_sel] |= (8*index + 0x12) << 16;
39285c
+            result[half_sel] |= (8*index + 0x13) << 24;
39285c
+            result[half_sel] |= (8*index + 0x14) << 32;
39285c
+            result[half_sel] |= (8*index + 0x15) << 40;
39285c
+            result[half_sel] |= (8*index + 0x16) << 48;
39285c
+            result[half_sel] |= (8*index + 0x17) << 56;
39285c
+         }
39285c
+      }
39285c
+
39285c
+   } else if (imm == 0b11) {   //little-endian compression
39285c
+      /* If IMM=0b00011, let pcv be the permute control vector required to
39285c
+         enable a right-indexed permute (vpermr or xxpermr) to implement a
39285c
+         compression of the sparse doubleword elements in a source vector
39285c
+         specified by the doubleword-element mask in VSR[VRB+32] into the
39285c
+         rightmost doubleword elements of a result vector.  */
39285c
+      for( index = 0; index < 2; index++) {
39285c
+         i = index;
39285c
+
39285c
+         if ( i == 1) {
39285c
+            src = src_hi;
39285c
+            half_sel = 0;
39285c
+         } else {
39285c
+            src = src_lo;
39285c
+            half_sel = 1;
39285c
+         }
39285c
+
39285c
+         sel_shift_by = 63;
39285c
+
39285c
+         if (((src >> sel_shift_by) & 0x1) == 1) {
39285c
+            if (j == 1) {
39285c
+               result[0] |= (8*index + 0x0) << 0;    // double-word j, byte 0
39285c
+               result[0] |= (8*index + 0x1) << 8;    // double-word j, byte 1
39285c
+               result[0] |= (8*index + 0x2) << 16;   // double-word j, byte 2
39285c
+               result[0] |= (8*index + 0x3) << 24;   // double-word j, byte 3
39285c
+               result[0] |= (8*index + 0x4) << 32;   // double-word j, byte 4
39285c
+               result[0] |= (8*index + 0x5) << 40;   // double-word j, byte 5
39285c
+               result[0] |= (8*index + 0x6) << 48;   // double-word j, byte 6
39285c
+               result[0] |= (8*index + 0x7) << 56;   // double-word j, byte 7
39285c
+            } else {
39285c
+               result[1] |= (8*index + 0x0) << 0;
39285c
+               result[1] |= (8*index + 0x1) << 8;
39285c
+               result[1] |= (8*index + 0x2) << 16;
39285c
+               result[1] |= (8*index + 0x3) << 24;
39285c
+               result[1] |= (8*index + 0x4) << 32;
39285c
+               result[1] |= (8*index + 0x5) << 40;
39285c
+               result[1] |= (8*index + 0x6) << 48;
39285c
+               result[1] |= (8*index + 0x7) << 56;
39285c
+            }
39285c
+            j++;
39285c
+         }
39285c
+      }
39285c
+   } else {
39285c
+      vex_printf("ERROR, vector_gen_pvc_dword_mask_helper, imm value %u not supported.\n",
39285c
+                 imm);
39285c
+      vassert(0);
39285c
+   }
39285c
+
39285c
+   write_VSX_entry( gst, reg_offset, result);
39285c
+}
39285c
 
39285c
 /*------------------------------------------------*/
39285c
 /*---- VSX Matrix signed integer GER functions ---*/
39285c
diff --git a/VEX/priv/guest_ppc_toIR.c b/VEX/priv/guest_ppc_toIR.c
39285c
index bcabf69dd..354be6b53 100644
39285c
--- a/VEX/priv/guest_ppc_toIR.c
39285c
+++ b/VEX/priv/guest_ppc_toIR.c
39285c
@@ -3322,6 +3322,7 @@ static IRExpr * locate_vector_ele_eq ( IRTemp src, IRExpr *value,
39285c
 #define DFORM_IMMASK  0xffffffff
39285c
 #define DSFORM_IMMASK 0xfffffffc
39285c
 #define DQFORM_IMMASK 0xfffffff0
39285c
+#define DA8LSFORM_IMMASK 0x3fffffff   // Algebraic 8LS Dform
39285c
 
39285c
 #define ISA_3_1_PREFIX_CHECK if (prefix) {if (!allow_isa_3_1) goto decode_noIsa3_1;}
39285c
 
39285c
@@ -6109,6 +6110,87 @@ static void vsx_matrix_64bit_float_ger ( const VexAbiInfo* vbi,
39285c
    stmt( IRStmt_Dirty(d) );
39285c
 }
39285c
 
39285c
+static void vector_gen_pvc_mask ( const VexAbiInfo* vbi,
39285c
+                                   IRExpr *src, UInt IMM,
39285c
+                                   UInt opc2, UInt VSX_addr ) {
39285c
+   /* The function takes a 64-bit source and an immediate value.  The function
39285c
+      calls a helper to execute the xxgenpcvbm, xxgenpcvhm, xxgenpcvwm,
39285c
+      xxgenpcvdm instruction.  The instructions are not practical to do with
39285c
+      Iops.  The instruction is implemented with a dirty helper that
39285c
+      calculates the 128-bit result and writes it directly into the guest
39285c
+      state VSX register.
39285c
+  */
39285c
+   IRTemp src_hi = newTemp( Ity_I64);
39285c
+   IRTemp src_lo = newTemp( Ity_I64);
39285c
+
39285c
+   IRDirty* d;
39285c
+
39285c
+   vassert( (VSX_addr >= 0) && (VSX_addr < 64) );
39285c
+   UInt reg_offset = offsetofPPCGuestState( guest_VSR0 )
39285c
+      + sizeof(U128) * VSX_addr;
39285c
+
39285c
+   assign( src_hi, unop( Iop_V128HIto64, src ) );
39285c
+   assign( src_lo, unop( Iop_V128to64, src ) );
39285c
+
39285c
+   IRExpr** args = mkIRExprVec_5(
39285c
+      IRExpr_GSPTR(),
39285c
+      mkexpr( src_hi ),
39285c
+      mkexpr( src_lo ),
39285c
+      mkU32( reg_offset ),
39285c
+      mkU64( IMM ) );
39285c
+
39285c
+   switch( opc2 ) {
39285c
+   case 0x394: // xxgenpcvbm
39285c
+      d = unsafeIRDirty_0_N (
39285c
+         0 /*regparms*/,
39285c
+         "vector_gen_pvc_byte_mask_dirty_helper",
39285c
+         fnptr_to_fnentry( vbi,
39285c
+                           &vector_gen_pvc_byte_mask_dirty_helper ),
39285c
+         args);
39285c
+      break;
39285c
+
39285c
+   case 0x395: // xxgenpcvhm
39285c
+      d = unsafeIRDirty_0_N (
39285c
+         0 /*regparms*/,
39285c
+         "vector_gen_pvc_hword_mask_dirty_helper",
39285c
+         fnptr_to_fnentry( vbi,
39285c
+                           &vector_gen_pvc_hword_mask_dirty_helper ),
39285c
+         args);
39285c
+      break;
39285c
+
39285c
+   case 0x3B4: // xxgenpcvwm
39285c
+      d = unsafeIRDirty_0_N (
39285c
+         0 /*regparms*/,
39285c
+         "vector_gen_pvc_word_mask_dirty_helper",
39285c
+         fnptr_to_fnentry( vbi,
39285c
+                           &vector_gen_pvc_word_mask_dirty_helper ),
39285c
+         args);
39285c
+      break;
39285c
+
39285c
+   case 0x3B5: // xxgenpcvdm
39285c
+      d = unsafeIRDirty_0_N (
39285c
+         0 /*regparms*/,
39285c
+         "vector_gen_pvc_dword_mask_dirty_helper",
39285c
+         fnptr_to_fnentry( vbi,
39285c
+                           &vector_gen_pvc_dword_mask_dirty_helper ),
39285c
+         args);
39285c
+      break;
39285c
+   default:
39285c
+      vex_printf("ERROR: Unkown instruction = %u in vector_gen_pvc_mask()\n",
39285c
+                 opc2);
39285c
+      return;
39285c
+   }
39285c
+
39285c
+   d->nFxState = 1;
39285c
+   vex_bzero(&d->fxState, sizeof(d->fxState));
39285c
+   d->fxState[0].fx     = Ifx_Modify;
39285c
+   d->fxState[0].size   = sizeof(U128);
39285c
+   d->fxState[0].offset = reg_offset;
39285c
+
39285c
+   /* execute the dirty call, side-effecting guest state */
39285c
+   stmt( IRStmt_Dirty(d) );
39285c
+}
39285c
+
39285c
 static IRExpr * UNSIGNED_CMP_GT_V128 ( IRExpr *vA, IRExpr *vB ) {
39285c
    /* This function does an unsigned compare of two V128 values. The
39285c
     * function is for use in 32-bit mode only as it is expensive.  The
39285c
@@ -35227,6 +35309,54 @@ static Bool dis_vsx_accumulator_prefix ( UInt prefix, UInt theInstr,
39285c
    return True;
39285c
 }
39285c
 
39285c
+static Bool dis_vector_generate_pvc_from_mask ( UInt prefix,
39285c
+                                                UInt theInstr,
39285c
+                                                const VexAbiInfo* vbi )
39285c
+{
39285c
+   UChar XT_addr = ifieldRegXT(theInstr);
39285c
+   UChar vB_addr = ifieldRegB(theInstr);
39285c
+   IRTemp vB = newTemp( Ity_V128 );
39285c
+   UInt opc2 = ifieldOPClo10(theInstr);
39285c
+   UInt IMM = IFIELD(theInstr, (31-15), 5);    // bits[11:15]
39285c
+
39285c
+   assign( vB, getVReg( vB_addr ) );
39285c
+
39285c
+   switch( opc2 ) {
39285c
+   case 0x394:
39285c
+      DIP("xxgenpcvbm v%u,v%u,%u\n", XT_addr, vB_addr, IMM);
39285c
+      /* vector_gen_pvc_mask uses a dirty helper to calculate the result and
39285c
+         write it to the VSX result register.  */
39285c
+      vector_gen_pvc_mask( vbi, mkexpr( vB ), IMM, opc2, XT_addr );
39285c
+      break;
39285c
+
39285c
+   case 0x395:
39285c
+      DIP("xxgenpcvhm v%u,v%u,%u\n", XT_addr, vB_addr, IMM);
39285c
+      /* vector_gen_pvc_mask uses a dirty helper to calculate the result and
39285c
+         write it to the VSX result register.  */
39285c
+      vector_gen_pvc_mask( vbi, mkexpr( vB ), IMM, opc2, XT_addr );
39285c
+      break;
39285c
+
39285c
+   case 0x3B4:
39285c
+      DIP("xxgenpcvwm v%u,v%u,%u\n", XT_addr, vB_addr, IMM);
39285c
+      /* vector_gen_pvc_mask uses a dirty helper to calculate the result and
39285c
+         write it to the VSX result register.  */
39285c
+      vector_gen_pvc_mask( vbi, mkexpr( vB ), IMM, opc2, XT_addr );
39285c
+      break;
39285c
+
39285c
+   case 0x3B5:
39285c
+      DIP("xxgenpcvdm v%u,v%u,%u\n", XT_addr, vB_addr, IMM);
39285c
+      /* vector_gen_pvc_mask uses a dirty helper to calculate the result and
39285c
+         write it to the VSX result register.  */
39285c
+      vector_gen_pvc_mask( vbi, mkexpr( vB ), IMM, opc2, XT_addr );
39285c
+      break;
39285c
+
39285c
+   default:
39285c
+      return False;
39285c
+   }
39285c
+
39285c
+   return True;
39285c
+}
39285c
+
39285c
 static Int dis_nop_prefix ( UInt prefix, UInt theInstr )
39285c
 {
39285c
    Bool is_prefix   = prefix_instruction( prefix );
39285c
@@ -35748,14 +35878,9 @@ DisResult disInstr_PPC_WRK (
39285c
       }
39285c
       goto decode_failure;
39285c
 
39285c
-   case 0x31:   // lfsu, stxv
39285c
+   case 0x31:   // lfsu
39285c
       if (!allow_F) goto decode_noF;
39285c
-      if (prefix_instruction( prefix )) {  // stxv
39285c
-         if ( !(allow_isa_3_1) ) goto decode_noIsa3_1;
39285c
-         if (dis_fp_pair_prefix( prefix, theInstr )) goto decode_success;
39285c
-      } else {  // lfsu
39285c
-         if (dis_fp_load( prefix, theInstr )) goto decode_success;
39285c
-      }
39285c
+      if (dis_fp_load( prefix, theInstr )) goto decode_success;
39285c
       goto decode_failure;
39285c
 
39285c
    case 0x32:
39285c
@@ -35842,7 +35967,6 @@ DisResult disInstr_PPC_WRK (
39285c
    case 0x39:  // pld, lxsd, lxssp, lfdp
39285c
       {
39285c
          UInt opc2tmp = ifieldOPC0o2(theInstr);
39285c
-
39285c
          if (!allow_F) goto decode_noF;
39285c
          if (prefix_instruction( prefix )) {   // pld
39285c
             if ( !(allow_isa_3_1) ) goto decode_noIsa3_1;
39285c
@@ -36125,12 +36249,6 @@ DisResult disInstr_PPC_WRK (
39285c
             goto decode_failure;
39285c
       }
39285c
 
39285c
-      /* The vsxOpc2 returned is the "normalized" value, representing the
39285c
-       * instructions secondary opcode as taken from the standard secondary
39285c
-       * opcode field [21:30] (IBM notatition), even if the actual field
39285c
-       * is non-standard.  These normalized values are given in the opcode
39285c
-       * appendices of the ISA 2.06 document.
39285c
-       */
39285c
       if ( ( opc2 == 0x168 ) && ( IFIELD( theInstr, 19, 2 ) == 0 ) )// xxspltib
39285c
       {
39285c
          /* This is a special case of the XX1 form where the  RA, RB
39285c
@@ -36153,6 +36271,23 @@ DisResult disInstr_PPC_WRK (
39285c
          goto decode_failure;
39285c
       }
39285c
 
39285c
+      if ( ( opc2 == 0x394 ) ||         // xxgenpcvbm
39285c
+           ( opc2 == 0x395 ) ||         // xxgenpcvwm
39285c
+           ( opc2 == 0x3B4 ) ||         // xxgenpcvhm
39285c
+           ( opc2 == 0x3B5 ) ) {        // xxgenpcvdm
39285c
+         if ( !(allow_isa_3_1) ) goto decode_noIsa3_1;
39285c
+         if (dis_vector_generate_pvc_from_mask( prefix, theInstr,
39285c
+                                                abiinfo ))
39285c
+            goto decode_success;
39285c
+         goto decode_failure;
39285c
+      }
39285c
+
39285c
+      /* The vsxOpc2 returned is the "normalized" value, representing the
39285c
+       * instructions secondary opcode as taken from the standard secondary
39285c
+       * opcode field [21:30] (IBM notatition), even if the actual field
39285c
+       * is non-standard.  These normalized values are given in the opcode
39285c
+       * appendices of the ISA 2.06 document.
39285c
+       */
39285c
       vsxOpc2 = get_VSX60_opc2(opc2, theInstr);
39285c
 
39285c
       switch (vsxOpc2) {
39285c
commit 078f89e99b6f62e043f6138c6a7ae238befc1f2a
39285c
Author: Carl Love <cel@us.ibm.com>
39285c
Date:   Fri Feb 26 15:46:55 2021 -0600
39285c
39285c
    PPC64: Reduced-Precision - bfloat16 Outer Product & Format Conversion Operations
39285c
    
39285c
    Add support for:
39285c
    
39285c
    pmxvbf16ger2 Prefixed Masked VSX Vector bfloat16 GER (Rank-2 Update)
39285c
    pmxvbf16ger2pp Prefixed Masked VSX Vector bfloat16 GER (Rank-2 Update) Positive
39285c
      multiply, Positive accumulate
39285c
    pmxvbf16ger2pn Prefixed Masked VSX Vector bfloat16 GER (Rank-2 Update) Positive
39285c
      multiply, Negative accumulate
39285c
    pmxvbf16ger2np Prefixed Masked VSX Vector bfloat16 GER (Rank-2 Update) Negative
39285c
      multiply, Positive accumulate
39285c
    pmxvbf16ger2nn Prefixed Masked VSX Vector bfloat16 GER (Rank-2 Update) Negative
39285c
      multiply, Negative accumulate
39285c
    xvbf16ger2VSX Vector bfloat16 GER (Rank-2 Update)
39285c
    xvbf16ger2pp VSX Vector bfloat16 GER (Rank-2 Update) Positive multiply, Positive
39285c
      accumulate
39285c
    xvbf16ger2pn VSX Vector bfloat16 GER (Rank-2 Update) Positive multiply, Negative
39285c
      accumulate
39285c
    xvbf16ger2np VSX Vector bfloat16 GER (Rank-2 Update) Negative multiply, Positive
39285c
      accumulate
39285c
    xvbf16ger2nn VSX Vector bfloat16 GER (Rank-2 Update) Negative multiply, Negative
39285c
      accumulate
39285c
    xvcvbf16sp VSX Vector Convert bfloat16 to Single-Precision format
39285c
    xvcvspbf16 VSX Vector Convert with round Single-Precision to bfloat16 format
39285c
39285c
diff --git a/VEX/priv/guest_ppc_defs.h b/VEX/priv/guest_ppc_defs.h
39285c
index 54ce923a9..d36d6c07d 100644
39285c
--- a/VEX/priv/guest_ppc_defs.h
39285c
+++ b/VEX/priv/guest_ppc_defs.h
39285c
@@ -150,6 +150,8 @@ extern ULong convert_to_zoned_helper( ULong src_hi, ULong src_low,
39285c
                                       ULong return_upper );
39285c
 extern ULong convert_to_national_helper( ULong src, ULong return_upper );
39285c
 extern ULong convert_from_zoned_helper( ULong src_hi, ULong src_low );
39285c
+extern ULong convert_from_floattobf16_helper( ULong src );
39285c
+extern ULong convert_from_bf16tofloat_helper( ULong src );
39285c
 extern ULong convert_from_national_helper( ULong src_hi, ULong src_low );
39285c
 extern ULong generate_C_FPCC_helper( ULong size, ULong src_hi, ULong src );
39285c
 extern ULong extract_bits_under_mask_helper( ULong src, ULong mask,
39285c
@@ -201,6 +203,11 @@ extern void vector_gen_pvc_dword_mask_dirty_helper( VexGuestPPC64State* gst,
39285c
 #define XVF16GER2PN    0b10010010
39285c
 #define XVF16GER2NP    0b01010010
39285c
 #define XVF16GER2NN    0b11010010
39285c
+#define XVBF16GER2     0b00110011
39285c
+#define XVBF16GER2PP   0b00110010
39285c
+#define XVBF16GER2PN   0b10110010
39285c
+#define XVBF16GER2NP   0b01110010
39285c
+#define XVBF16GER2NN   0b11110010
39285c
 #define XVF32GER       0b00011011
39285c
 #define XVF32GERPP     0b00011010
39285c
 #define XVF32GERPN     0b10011010
39285c
diff --git a/VEX/priv/guest_ppc_helpers.c b/VEX/priv/guest_ppc_helpers.c
39285c
index 75497abb9..6bcee966d 100644
39285c
--- a/VEX/priv/guest_ppc_helpers.c
39285c
+++ b/VEX/priv/guest_ppc_helpers.c
39285c
@@ -1905,6 +1905,125 @@ static Double conv_f16_to_double( ULong input )
39285c
 #  endif
39285c
 }
39285c
 
39285c
+#define BF16_SIGN_MASK   0x8000
39285c
+#define BF16_EXP_MASK    0x7F80
39285c
+#define BF16_FRAC_MASK   0x007F
39285c
+#define BF16_BIAS        127
39285c
+#define BF16_MAX_UNBIASED_EXP 127
39285c
+#define BF16_MIN_UNBIASED_EXP -126
39285c
+#define FLOAT_SIGN_MASK  0x80000000
39285c
+#define FLOAT_EXP_MASK   0x7F800000
39285c
+#define FLOAT_FRAC_MASK  0x007FFFFF
39285c
+#define FLOAT_FRAC_BIT8  0x00008000
39285c
+#define FLOAT_BIAS       127
39285c
+
39285c
+static Float conv_bf16_to_float( UInt input )
39285c
+{
39285c
+  /* input is 16-bit bfloat.
39285c
+     bias +127, exponent 8-bits, fraction 7-bits
39285c
+
39285c
+     output is 32-bit float.
39285c
+     bias +127, exponent 8-bits, fraction 22-bits
39285c
+  */
39285c
+
39285c
+  UInt input_exp, input_fraction, unbiased_exp;
39285c
+  UInt output_exp, output_fraction;
39285c
+  UInt sign;
39285c
+  union convert_t conv;
39285c
+
39285c
+  sign = (UInt)(input & BF16_SIGN_MASK);
39285c
+  input_exp = input & BF16_EXP_MASK;
39285c
+  unbiased_exp = (input_exp >> 7) - (UInt)BF16_BIAS;
39285c
+  input_fraction = input & BF16_FRAC_MASK;
39285c
+
39285c
+  if (((input_exp & BF16_EXP_MASK) == BF16_EXP_MASK) &&
39285c
+      (input_fraction != 0)) {
39285c
+     /* input is NaN or SNaN, exp all 1's, fraction != 0 */
39285c
+     output_exp = FLOAT_EXP_MASK;
39285c
+     output_fraction = input_fraction;
39285c
+
39285c
+  } else if(((input_exp & BF16_EXP_MASK) == BF16_EXP_MASK) &&
39285c
+      ( input_fraction == 0)) {
39285c
+     /* input is infinity,  exp all 1's, fraction = 0  */
39285c
+     output_exp = FLOAT_EXP_MASK;
39285c
+     output_fraction = 0;
39285c
+
39285c
+  } else if((input_exp == 0) && (input_fraction == 0)) {
39285c
+     /* input is zero */
39285c
+     output_exp = 0;
39285c
+     output_fraction = 0;
39285c
+
39285c
+  } else if((input_exp == 0) && (input_fraction != 0)) {
39285c
+     /* input is denormal */
39285c
+     output_fraction = input_fraction;
39285c
+     output_exp = (-(Int)BF16_BIAS + (Int)FLOAT_BIAS ) << 23;
39285c
+
39285c
+  } else {
39285c
+     /* result is normal */
39285c
+     output_exp = (unbiased_exp + FLOAT_BIAS) << 23;
39285c
+     output_fraction = input_fraction;
39285c
+  }
39285c
+
39285c
+  conv.u32 = sign << (31 - 15) | output_exp | (output_fraction << (23-7));
39285c
+  return conv.f;
39285c
+}
39285c
+
39285c
+static UInt conv_float_to_bf16( UInt input )
39285c
+{
39285c
+   /* input is 32-bit float stored as unsigned 32-bit.
39285c
+      bias +127, exponent 8-bits, fraction 23-bits
39285c
+
39285c
+      output is 16-bit bfloat.
39285c
+      bias +127, exponent 8-bits, fraction 7-bits
39285c
+
39285c
+      If the unbiased exponent of the input is greater than the max floating
39285c
+      point unbiased exponent value, the result of the floating point 16-bit
39285c
+      value is infinity.
39285c
+   */
39285c
+
39285c
+   UInt input_exp, input_fraction;
39285c
+   UInt output_exp, output_fraction;
39285c
+   UInt result, sign;
39285c
+
39285c
+   sign = input & FLOAT_SIGN_MASK;
39285c
+   input_exp = input & FLOAT_EXP_MASK;
39285c
+   input_fraction = input & FLOAT_FRAC_MASK;
39285c
+
39285c
+   if (((input_exp & FLOAT_EXP_MASK) == FLOAT_EXP_MASK) &&
39285c
+       (input_fraction != 0)) {
39285c
+      /* input is NaN or SNaN, exp all 1's, fraction != 0 */
39285c
+      output_exp = BF16_EXP_MASK;
39285c
+      output_fraction = (ULong)input_fraction >> (23 - 7);
39285c
+   } else if (((input_exp & FLOAT_EXP_MASK) == FLOAT_EXP_MASK) &&
39285c
+              ( input_fraction == 0)) {
39285c
+      /* input is infinity,  exp all 1's, fraction = 0  */
39285c
+      output_exp = BF16_EXP_MASK;
39285c
+      output_fraction = 0;
39285c
+   } else if ((input_exp == 0) && (input_fraction == 0)) {
39285c
+      /* input is zero */
39285c
+      output_exp = 0;
39285c
+      output_fraction = 0;
39285c
+   } else if ((input_exp == 0) && (input_fraction != 0)) {
39285c
+      /* input is denormal */
39285c
+      output_exp = 0;
39285c
+      output_fraction = (ULong)input_fraction >> (23 - 7);
39285c
+   } else {
39285c
+      /* result is normal */
39285c
+      output_exp = (input_exp - BF16_BIAS + FLOAT_BIAS) >> (23 - 7);
39285c
+      output_fraction = (ULong)input_fraction >> (23 - 7);
39285c
+
39285c
+      /* Round result. Look at the 8th bit position of the 32-bit floating
39285c
+         pointt fraction.  The F16 fraction is only 7 bits wide so if the 8th
39285c
+         bit of the F32 is a 1 we need to round up by adding 1 to the output
39285c
+         fraction.  */
39285c
+      if ((input_fraction & FLOAT_FRAC_BIT8) == FLOAT_FRAC_BIT8)
39285c
+         /* Round the F16 fraction up by 1 */
39285c
+         output_fraction = output_fraction + 1;
39285c
+   }
39285c
+
39285c
+   result = sign >> (31 - 15) | output_exp | output_fraction;
39285c
+   return result;
39285c
+}
39285c
 
39285c
 static Float conv_double_to_float( Double src )
39285c
 {
39285c
@@ -1942,6 +2061,36 @@ static Float negate_float( Float input )
39285c
       return -input;
39285c
 }
39285c
 
39285c
+/* This C-helper takes a vector of two 32-bit floating point values
39285c
+ * and returns a vector containing two 16-bit bfloats.
39285c
+   input:    word0           word1
39285c
+   output  0x0   hword1   0x0    hword3
39285c
+   Called from generated code.
39285c
+ */
39285c
+ULong convert_from_floattobf16_helper( ULong src ) {
39285c
+   ULong resultHi, resultLo;
39285c
+
39285c
+   resultHi = (ULong)conv_float_to_bf16( (UInt)(src >> 32));
39285c
+   resultLo = (ULong)conv_float_to_bf16( (UInt)(src & 0xFFFFFFFF));
39285c
+   return (resultHi << 32) | resultLo;
39285c
+
39285c
+}
39285c
+
39285c
+/* This C-helper takes a vector of two 16-bit bfloating point values
39285c
+ * and returns a vector containing one 32-bit float.
39285c
+   input:   0x0   hword1   0x0    hword3
39285c
+   output:    word0           word1
39285c
+ */
39285c
+ULong convert_from_bf16tofloat_helper( ULong src ) {
39285c
+   ULong result;
39285c
+   union convert_t conv;
39285c
+   conv.f = conv_bf16_to_float( (UInt)(src >> 32) );
39285c
+   result = (ULong) conv.u32;
39285c
+   conv.f = conv_bf16_to_float( (UInt)(src & 0xFFFFFFFF));
39285c
+   result = (result << 32) | (ULong) conv.u32;
39285c
+   return result;
39285c
+ }
39285c
+
39285c
 void vsx_matrix_16bit_float_ger_dirty_helper( VexGuestPPC64State* gst,
39285c
                                               UInt offset_ACC,
39285c
                                               ULong srcA_hi, ULong srcA_lo,
39285c
@@ -2002,24 +2151,44 @@ void vsx_matrix_16bit_float_ger_dirty_helper( VexGuestPPC64State* gst,
39285c
          srcB_word[0][j] = (UInt)((srcB_lo >> (16-16*j)) & mask);
39285c
       }
39285c
 
39285c
+      /* Note the isa is not consistent in the src naming.  Will use the
39285c
+         naming src10, src11, src20, src21 used with xvf16ger2 instructions.
39285c
+      */
39285c
       for( j = 0; j < 4; j++) {
39285c
          if (((pmsk >> 1) & 0x1) == 0) {
39285c
             src10 = 0;
39285c
             src20 = 0;
39285c
          } else {
39285c
-            src10 = conv_f16_to_double((ULong)srcA_word[i][0]);
39285c
-            src20 = conv_f16_to_double((ULong)srcB_word[j][0]);
39285c
+            if (( inst  == XVF16GER2 ) || ( inst  == XVF16GER2PP )
39285c
+                || ( inst == XVF16GER2PN ) || ( inst  == XVF16GER2NP )
39285c
+                || ( inst == XVF16GER2NN )) {
39285c
+               src10 = conv_f16_to_double((ULong)srcA_word[i][0]);
39285c
+               src20 = conv_f16_to_double((ULong)srcB_word[j][0]);
39285c
+            } else {
39285c
+               /* Input is in bfloat format, result is stored in the
39285c
+                  "traditional" 64-bit float format. */
39285c
+               src10 = (double)conv_bf16_to_float((ULong)srcA_word[i][0]);
39285c
+               src20 = (double)conv_bf16_to_float((ULong)srcB_word[j][0]);
39285c
+            }
39285c
          }
39285c
 
39285c
          if ((pmsk & 0x1) == 0) {
39285c
             src11 = 0;
39285c
             src21 = 0;
39285c
          } else {
39285c
-            src11 = conv_f16_to_double((ULong)srcA_word[i][1]);
39285c
-            src21 = conv_f16_to_double((ULong)srcB_word[j][1]);
39285c
+            if (( inst  == XVF16GER2 ) || ( inst  == XVF16GER2PP )
39285c
+                || ( inst == XVF16GER2PN ) || ( inst  == XVF16GER2NP )
39285c
+                || ( inst == XVF16GER2NN )) {
39285c
+               src11 = conv_f16_to_double((ULong)srcA_word[i][1]);
39285c
+               src21 = conv_f16_to_double((ULong)srcB_word[j][1]);
39285c
+            } else {
39285c
+               /* Input is in bfloat format, result is stored in the
39285c
+                  "traditional" 64-bit float format. */
39285c
+               src11 = (double)conv_bf16_to_float((ULong)srcA_word[i][1]);
39285c
+               src21 = (double)conv_bf16_to_float((ULong)srcB_word[j][1]);
39285c
+            }
39285c
          }
39285c
 
39285c
-
39285c
          prod = src10 * src20;
39285c
          msum = prod + src11 * src21;
39285c
 
39285c
@@ -2027,26 +2196,26 @@ void vsx_matrix_16bit_float_ger_dirty_helper( VexGuestPPC64State* gst,
39285c
             /* Note, we do not track the exception handling bits
39285c
                ox, ux, xx, si, mz, vxsnan and vximz in the FPSCR.  */
39285c
 
39285c
-            if ( inst == XVF16GER2 )
39285c
+            if (( inst == XVF16GER2 ) || ( inst == XVBF16GER2 ) )
39285c
                result[j] = reinterpret_float_as_int(
39285c
                   conv_double_to_float(msum) );
39285c
 
39285c
-            else if ( inst == XVF16GER2PP )
39285c
+            else if (( inst == XVF16GER2PP ) ||  (inst == XVBF16GER2PP ))
39285c
                result[j] = reinterpret_float_as_int(
39285c
                   conv_double_to_float(msum)
39285c
                   + acc_word[j] );
39285c
 
39285c
-            else if ( inst == XVF16GER2PN )
39285c
+            else if (( inst == XVF16GER2PN ) || ( inst == XVBF16GER2PN ))
39285c
                result[j] = reinterpret_float_as_int(
39285c
                   conv_double_to_float(msum)
39285c
                   + negate_float( acc_word[j] ) );
39285c
 
39285c
-            else if ( inst == XVF16GER2NP )
39285c
+            else if (( inst == XVF16GER2NP ) || ( inst == XVBF16GER2NP ))
39285c
                result[j] = reinterpret_float_as_int(
39285c
                   conv_double_to_float( negate_double( msum ) )
39285c
                   + acc_word[j] );
39285c
 
39285c
-            else if ( inst == XVF16GER2NN )
39285c
+            else if (( inst == XVF16GER2NN ) || ( inst == XVBF16GER2NN ))
39285c
                result[j] = reinterpret_float_as_int(
39285c
                   conv_double_to_float( negate_double( msum ) )
39285c
                   + negate_float( acc_word[j] ) );
39285c
diff --git a/VEX/priv/guest_ppc_toIR.c b/VEX/priv/guest_ppc_toIR.c
39285c
index 354be6b53..20553a539 100644
39285c
--- a/VEX/priv/guest_ppc_toIR.c
39285c
+++ b/VEX/priv/guest_ppc_toIR.c
39285c
@@ -5688,6 +5688,57 @@ static IRExpr * convert_from_national ( const VexAbiInfo* vbi, IRExpr *src ) {
39285c
    return mkexpr( result );
39285c
 }
39285c
 
39285c
+static IRExpr * vector_convert_floattobf16 ( const VexAbiInfo* vbi,
39285c
+                                             IRExpr *src ) {
39285c
+   /* The function takes 128-bit value containing four 32-bit floats and
39285c
+      returns a 128-bit value containint four 16-bit bfloats in the lower
39285c
+      halfwords. */
39285c
+
39285c
+   IRTemp resultHi = newTemp( Ity_I64);
39285c
+   IRTemp resultLo = newTemp( Ity_I64);
39285c
+
39285c
+   assign( resultHi,
39285c
+           mkIRExprCCall( Ity_I64, 0 /*regparms*/,
39285c
+                          "vector_convert_floattobf16_helper",
39285c
+                          fnptr_to_fnentry( vbi,
39285c
+                                            &convert_from_floattobf16_helper ),
39285c
+                          mkIRExprVec_1( unop( Iop_V128HIto64, src ) ) ) );
39285c
+
39285c
+   assign( resultLo,
39285c
+           mkIRExprCCall( Ity_I64, 0 /*regparms*/,
39285c
+                          "vector_convert_floattobf16_helper",
39285c
+                          fnptr_to_fnentry( vbi,
39285c
+                                            &convert_from_floattobf16_helper ),
39285c
+                          mkIRExprVec_1( unop( Iop_V128to64, src ) ) ) );
39285c
+
39285c
+   return binop( Iop_64HLtoV128, mkexpr( resultHi ), mkexpr( resultLo ) );
39285c
+}
39285c
+
39285c
+static IRExpr * vector_convert_bf16tofloat ( const VexAbiInfo* vbi,
39285c
+                                             IRExpr *src ) {
39285c
+   /* The function takes 128-bit value containing four 16-bit bfloats in
39285c
+      the lower halfwords and returns a 128-bit value containint four
39285c
+      32-bit floats. */
39285c
+   IRTemp resultHi = newTemp( Ity_I64);
39285c
+   IRTemp resultLo = newTemp( Ity_I64);
39285c
+
39285c
+   assign( resultHi,
39285c
+           mkIRExprCCall( Ity_I64, 0 /*regparms*/,
39285c
+                          "vector_convert_bf16tofloat_helper",
39285c
+                          fnptr_to_fnentry( vbi,
39285c
+                                            &convert_from_bf16tofloat_helper ),
39285c
+                          mkIRExprVec_1( unop( Iop_V128HIto64, src ) ) ) );
39285c
+
39285c
+   assign( resultLo,
39285c
+           mkIRExprCCall( Ity_I64, 0 /*regparms*/,
39285c
+                          "vector_convert_bf16tofloat_helper",
39285c
+                          fnptr_to_fnentry( vbi,
39285c
+                                            &convert_from_bf16tofloat_helper ),
39285c
+                          mkIRExprVec_1( unop( Iop_V128to64, src ) ) ) );
39285c
+
39285c
+   return binop( Iop_64HLtoV128, mkexpr( resultHi ), mkexpr( resultLo ) );
39285c
+}
39285c
+
39285c
 static IRExpr * popcnt64 ( const VexAbiInfo* vbi,
39285c
                            IRExpr *src ){
39285c
    /* The function takes a 64-bit source and counts the number of bits in the
39285c
@@ -5936,6 +5987,7 @@ static void vsx_matrix_ger ( const VexAbiInfo* vbi,
39285c
    case XVI16GER2:
39285c
    case XVI16GER2S:
39285c
    case XVF16GER2:
39285c
+   case XVBF16GER2:
39285c
    case XVF32GER:
39285c
          AT_fx = Ifx_Write;
39285c
          break;
39285c
@@ -5943,6 +5995,10 @@ static void vsx_matrix_ger ( const VexAbiInfo* vbi,
39285c
    case XVI8GER4PP:
39285c
    case XVI16GER2PP:
39285c
    case XVI16GER2SPP:
39285c
+   case XVBF16GER2PP:
39285c
+   case XVBF16GER2PN:
39285c
+   case XVBF16GER2NP:
39285c
+   case XVBF16GER2NN:
39285c
    case XVF16GER2PP:
39285c
    case XVF16GER2PN:
39285c
    case XVF16GER2NP:
39285c
@@ -23899,6 +23955,24 @@ dis_vxs_misc( UInt prefix, UInt theInstr, const VexAbiInfo* vbi, UInt opc2,
39285c
                                     mkexpr( sub_element1 ),
39285c
                                     mkexpr( sub_element0 ) ) ) );
39285c
 
39285c
+         } else if ((inst_select == 16) && !prefix) {
39285c
+            IRTemp result = newTemp(Ity_V128);
39285c
+            UChar xT_addr = ifieldRegXT ( theInstr );
39285c
+            UChar xB_addr = ifieldRegXB ( theInstr );
39285c
+            /* Convert 16-bit bfloat to 32-bit float, not a prefix inst */
39285c
+            DIP("xvcvbf16sp v%u,v%u\n", xT_addr, xB_addr);
39285c
+            assign( result, vector_convert_bf16tofloat( vbi, mkexpr( vB ) ) );
39285c
+            putVSReg( XT, mkexpr( result) );
39285c
+
39285c
+         } else if ((inst_select == 17) && !prefix) {
39285c
+            IRTemp result = newTemp(Ity_V128);
39285c
+            UChar xT_addr = ifieldRegXT ( theInstr );
39285c
+            UChar xB_addr = ifieldRegXB ( theInstr );
39285c
+            /* Convert 32-bit float to 16-bit bfloat, not a prefix inst */
39285c
+            DIP("xvcvspbf16 v%u,v%u\n", xT_addr, xB_addr);
39285c
+            assign( result, vector_convert_floattobf16( vbi, mkexpr( vB ) ) );
39285c
+            putVSReg( XT, mkexpr( result) );
39285c
+
39285c
          } else if (inst_select == 23) {
39285c
             DIP("xxbrd v%u, v%u\n", (UInt)XT, (UInt)XB);
39285c
 
39285c
@@ -34956,6 +35030,41 @@ static Bool dis_vsx_accumulator_prefix ( UInt prefix, UInt theInstr,
39285c
                          getVSReg( rB_addr ), AT,
39285c
                          ( ( inst_prefix << 8 ) | XO ) );
39285c
          break;
39285c
+      case XVBF16GER2:
39285c
+         DIP("xvbf16ger2 %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_FLOAT_GER,
39285c
+                         getVSReg( rA_addr ),
39285c
+                         getVSReg( rB_addr ), AT,
39285c
+                         ( ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
+      case XVBF16GER2PP:
39285c
+         DIP("xvbf16ger2pp %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_FLOAT_GER,
39285c
+                         getVSReg( rA_addr ),
39285c
+                         getVSReg( rB_addr ), AT,
39285c
+                         ( ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
+      case XVBF16GER2PN:
39285c
+         DIP("xvbf16ger2pn %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_FLOAT_GER,
39285c
+                         getVSReg( rA_addr ),
39285c
+                         getVSReg( rB_addr ), AT,
39285c
+                         ( ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
+      case XVBF16GER2NP:
39285c
+         DIP("xvbf16ger2np %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_FLOAT_GER,
39285c
+                         getVSReg( rA_addr ),
39285c
+                         getVSReg( rB_addr ), AT,
39285c
+                         ( ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
+      case XVBF16GER2NN:
39285c
+         DIP("xvbf16ger2nn %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_FLOAT_GER,
39285c
+                         getVSReg( rA_addr ),
39285c
+                         getVSReg( rB_addr ), AT,
39285c
+                         ( ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
       case XVF32GER:
39285c
          DIP("xvf32ger %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
          vsx_matrix_ger( vbi, MATRIX_32BIT_FLOAT_GER,
39285c
@@ -35106,6 +35215,61 @@ static Bool dis_vsx_accumulator_prefix ( UInt prefix, UInt theInstr,
39285c
                          AT,
39285c
                          ( (MASKS << 9 ) | ( inst_prefix << 8 ) | XO ) );
39285c
          break;
39285c
+      case XVBF16GER2:
39285c
+         PMSK = IFIELD( prefix, 14, 2);
39285c
+         XMSK = IFIELD( prefix, 4, 4);
39285c
+         YMSK = IFIELD( prefix, 0, 4);
39285c
+         DIP("pmxvbf16ger2 %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_FLOAT_GER,
39285c
+                         getVSReg( rA_addr ),
39285c
+                         getVSReg( rB_addr ),
39285c
+                         AT, ( (MASKS << 9 )
39285c
+                               | ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
+      case XVBF16GER2PP:
39285c
+         PMSK = IFIELD( prefix, 14, 2);
39285c
+         XMSK = IFIELD( prefix, 4, 4);
39285c
+         YMSK = IFIELD( prefix, 0, 4);
39285c
+         DIP("pmxvbf16ger2pp %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_FLOAT_GER,
39285c
+                         getVSReg( rA_addr ),
39285c
+                         getVSReg( rB_addr ),
39285c
+                         AT, ( (MASKS << 9 )
39285c
+                               | ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
+      case XVBF16GER2PN:
39285c
+         PMSK = IFIELD( prefix, 14, 2);
39285c
+         XMSK = IFIELD( prefix, 4, 4);
39285c
+         YMSK = IFIELD( prefix, 0, 4);
39285c
+         DIP("pmxvbf16ger2pn %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_FLOAT_GER,
39285c
+                         getVSReg( rA_addr ),
39285c
+                         getVSReg( rB_addr ),
39285c
+                         AT, ( (MASKS << 9 )
39285c
+                               | ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
+      case XVBF16GER2NP:
39285c
+         PMSK = IFIELD( prefix, 14, 2);
39285c
+         XMSK = IFIELD( prefix, 4, 4);
39285c
+         YMSK = IFIELD( prefix, 0, 4);
39285c
+         DIP("pmxvbf16ger2np %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_FLOAT_GER,
39285c
+                         getVSReg( rA_addr ),
39285c
+                         getVSReg( rB_addr ),
39285c
+                         AT, ( (MASKS << 9 )
39285c
+                               | ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
+      case XVBF16GER2NN:
39285c
+         PMSK = IFIELD( prefix, 14, 2);
39285c
+         XMSK = IFIELD( prefix, 4, 4);
39285c
+         YMSK = IFIELD( prefix, 0, 4);
39285c
+         DIP("pmxvbf16ger2nn %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_FLOAT_GER,
39285c
+                         getVSReg( rA_addr ),
39285c
+                         getVSReg( rB_addr ),
39285c
+                         AT, ( (MASKS << 9 )
39285c
+                               | ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
       case XVF16GER2:
39285c
          PMSK = IFIELD( prefix, 14, 2);
39285c
          XMSK = IFIELD( prefix, 4, 4);
39285c
@@ -36181,6 +36345,11 @@ DisResult disInstr_PPC_WRK (
39285c
              (opc2 == XVI4GER8PP)     ||       // xvi4ger8pp
39285c
              (opc2 == XVI8GER4)       ||       // xvi8ger4
39285c
              (opc2 == XVI8GER4PP)     ||       // xvi8ger4pp
39285c
+             (opc2 == XVBF16GER2)     ||       // xvbf16ger2
39285c
+             (opc2 == XVBF16GER2PP)   ||       // xvbf16ger2pp
39285c
+             (opc2 == XVBF16GER2PN)   ||       // xvbf16ger2pn
39285c
+             (opc2 == XVBF16GER2NP)   ||       // xvbf16ger2np
39285c
+             (opc2 == XVBF16GER2NN)   ||       // xvbf16ger2nn
39285c
              (opc2 == XVF16GER2)      ||       // xvf16ger2
39285c
              (opc2 == XVF16GER2PP)    ||       // xvf16ger2pp
39285c
              (opc2 == XVF16GER2PN)    ||       // xvf16ger2pn
39285c
commit e09fdaf569b975717465ed8043820d0198d4d47d
39285c
Author: Carl Love <cel@us.ibm.com>
39285c
Date:   Fri Feb 26 16:05:12 2021 -0600
39285c
39285c
    PPC64: Reduced-Precision: Missing Integer-based Outer Product Operations
39285c
    
39285c
    Add support for:
39285c
    
39285c
    pmxvi16ger2 VSX Vector 16-bit Signed Integer GER (rank-2 update), Prefixed
39285c
       Masked
39285c
    pmxvi16ger2pp VSX Vector 16-bit Signed Integer GER (rank-2 update) (Positive
39285c
       multiply, Positive accumulate), Prefixed Masked
39285c
    pmxvi8ger4spp VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) with
39285c
       Saturation (Positive multiply, Positive accumulate), Prefixed Masked
39285c
    xvi16ger2 VSX Vector 16-bit Signed Integer GER (rank-2 update)
39285c
    xvi16ger2pp VSX Vector 16-bit Signed Integer GER (rank-2 update) (Positive
39285c
       multiply, Positive accumulate)
39285c
    xvi8ger4spp VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) with
39285c
       Saturation (Positive multiply, Positive accumulate)
39285c
39285c
diff --git a/VEX/priv/guest_ppc_helpers.c b/VEX/priv/guest_ppc_helpers.c
39285c
index 6bcee966d..d8131eb60 100644
39285c
--- a/VEX/priv/guest_ppc_helpers.c
39285c
+++ b/VEX/priv/guest_ppc_helpers.c
39285c
@@ -1446,16 +1446,16 @@ static UInt exts4( UInt src)
39285c
       return src & 0xF;        /* make sure high order bits are zero */
39285c
 }
39285c
 
39285c
-static UInt exts8( UInt src)
39285c
+static ULong exts8( UInt src)
39285c
 {
39285c
-   /* Input is an 8-bit value.  Extend bit 7 to bits [31:8] */
39285c
+   /* Input is an 8-bit value.  Extend bit 7 to bits [63:8] */
39285c
    if (( src >> 7 ) & 0x1)
39285c
-      return src | 0xFFFFFF00; /* sign bit is a 1, extend */
39285c
+      return src | 0xFFFFFFFFFFFFFF00ULL; /* sign bit is a 1, extend */
39285c
    else
39285c
       return src & 0xFF;        /* make sure high order bits are zero */
39285c
 }
39285c
 
39285c
-static UInt extz8( UInt src)
39285c
+static ULong extz8( UInt src)
39285c
 {
39285c
    /* Input is an 8-bit value.  Extend src on the left with zeros.  */
39285c
    return src & 0xFF;        /* make sure high order bits are zero */
39285c
@@ -1662,12 +1662,12 @@ void vsx_matrix_8bit_ger_dirty_helper( VexGuestPPC64State* gst,
39285c
                                        ULong srcB_hi, ULong srcB_lo,
39285c
                                        UInt masks_inst )
39285c
 {
39285c
-   UInt i, j, mask, sum, inst, acc_entry, prefix_inst;
39285c
+   UInt i, j, mask, inst, acc_entry, prefix_inst;
39285c
 
39285c
    UInt srcA_bytes[4][4];   /* word, byte */
39285c
    UInt srcB_bytes[4][4];   /* word, byte */
39285c
    UInt acc_word[4];
39285c
-   UInt prod0, prod1, prod2, prod3;
39285c
+   ULong prod0, prod1, prod2, prod3, sum;
39285c
    UInt result[4];
39285c
    UInt pmsk = 0;
39285c
    UInt xmsk = 0;
39285c
@@ -1742,10 +1742,13 @@ void vsx_matrix_8bit_ger_dirty_helper( VexGuestPPC64State* gst,
39285c
             sum = prod0 + prod1 + prod2 + prod3;
39285c
 
39285c
             if ( inst == XVI8GER4 )
39285c
-               result[j] = sum;
39285c
+               result[j] = chop64to32( sum );
39285c
 
39285c
             else if ( inst == XVI8GER4PP )
39285c
-               result[j] = sum + acc_word[j];
39285c
+               result[j] = chop64to32( sum + acc_word[j] );
39285c
+
39285c
+            else if ( inst == XVI8GER4SPP )
39285c
+               result[j] = clampS64toS32(sum + acc_word[j]);
39285c
 
39285c
          } else {
39285c
             result[j] = 0;
39285c
@@ -1821,7 +1824,7 @@ void vsx_matrix_16bit_ger_dirty_helper( VexGuestPPC64State* gst,
39285c
             else
39285c
                prod1 = exts16to64( srcA_word[i][1] )
39285c
                   * exts16to64( srcB_word[j][1] );
39285c
-            /* sum is UInt so the result is choped to 32-bits */
39285c
+
39285c
             sum = prod0 + prod1;
39285c
 
39285c
             if ( inst == XVI16GER2 )
39285c
@@ -1830,13 +1833,11 @@ void vsx_matrix_16bit_ger_dirty_helper( VexGuestPPC64State* gst,
39285c
             else if ( inst == XVI16GER2S )
39285c
                result[j] = clampS64toS32( sum );
39285c
 
39285c
-            else if ( inst == XVI16GER2PP ) {
39285c
+            else if ( inst == XVI16GER2PP )
39285c
                result[j] = chop64to32( sum + acc_word[j] );
39285c
-            }
39285c
 
39285c
-            else if ( inst == XVI16GER2SPP ) {
39285c
+            else if ( inst == XVI16GER2SPP )
39285c
                result[j] = clampS64toS32( sum + acc_word[j] );
39285c
-            }
39285c
 
39285c
          } else {
39285c
             result[j] = 0;
39285c
diff --git a/VEX/priv/guest_ppc_toIR.c b/VEX/priv/guest_ppc_toIR.c
39285c
index 20553a539..e54f0f389 100644
39285c
--- a/VEX/priv/guest_ppc_toIR.c
39285c
+++ b/VEX/priv/guest_ppc_toIR.c
39285c
@@ -5993,6 +5993,7 @@ static void vsx_matrix_ger ( const VexAbiInfo* vbi,
39285c
          break;
39285c
    case XVI4GER8PP:
39285c
    case XVI8GER4PP:
39285c
+   case XVI8GER4SPP:
39285c
    case XVI16GER2PP:
39285c
    case XVI16GER2SPP:
39285c
    case XVBF16GER2PP:
39285c
@@ -34983,6 +34984,12 @@ static Bool dis_vsx_accumulator_prefix ( UInt prefix, UInt theInstr,
39285c
                          getVSReg( rA_addr ), getVSReg( rB_addr ),
39285c
                          AT, ( ( inst_prefix << 8 ) | XO ) );
39285c
          break;
39285c
+      case XVI8GER4SPP:
39285c
+         DIP("xvi8ger4spp %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
+         vsx_matrix_ger( vbi, MATRIX_8BIT_INT_GER,
39285c
+                         getVSReg( rA_addr ), getVSReg( rB_addr ),
39285c
+                         AT, ( ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
       case XVI16GER2S:
39285c
          DIP("xvi16ger2s %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
          vsx_matrix_ger( vbi, MATRIX_16BIT_INT_GER,
39285c
@@ -34995,6 +35002,19 @@ static Bool dis_vsx_accumulator_prefix ( UInt prefix, UInt theInstr,
39285c
                          getVSReg( rA_addr ), getVSReg( rB_addr ),
39285c
                          AT, ( ( inst_prefix << 8 ) | XO ) );
39285c
          break;
39285c
+      case XVI16GER2:
39285c
+         DIP("xvi16ger2 %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_INT_GER,
39285c
+                         getVSReg( rA_addr ), getVSReg( rB_addr ),
39285c
+                         AT, ( ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
+      case XVI16GER2PP:
39285c
+         DIP("xvi16ger2pp %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_INT_GER,
39285c
+                         getVSReg( rA_addr ), getVSReg( rB_addr ),
39285c
+                         AT, ( ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
+
39285c
       case XVF16GER2:
39285c
          DIP("xvf16ger2 %u,r%u, r%u\n", AT, rA_addr, rB_addr);
39285c
          vsx_matrix_ger( vbi, MATRIX_16BIT_FLOAT_GER,
39285c
@@ -35193,6 +35213,39 @@ static Bool dis_vsx_accumulator_prefix ( UInt prefix, UInt theInstr,
39285c
                          AT,
39285c
                          ( (MASKS << 9 ) | ( inst_prefix << 8 ) | XO ) );
39285c
          break;
39285c
+      case XVI8GER4SPP:
39285c
+         PMSK = IFIELD( prefix, 12, 4);
39285c
+         XMSK = IFIELD( prefix, 4, 4);
39285c
+         YMSK = IFIELD( prefix, 0, 4);
39285c
+         DIP("pmxvi8ger4spp %u,r%u, r%u,%u,%u,%u\n",
39285c
+             AT, rA_addr, rB_addr, XMSK, YMSK, PMSK);
39285c
+         vsx_matrix_ger( vbi, MATRIX_8BIT_INT_GER,
39285c
+                         getVSReg( rA_addr ), getVSReg( rB_addr ),
39285c
+                         AT,
39285c
+                         ( (MASKS << 9 ) | ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
+      case XVI16GER2:
39285c
+         PMSK = IFIELD( prefix, 12, 4);
39285c
+         XMSK = IFIELD( prefix, 4, 4);
39285c
+         YMSK = IFIELD( prefix, 0, 4);
39285c
+         DIP("pmxvi16ger2 %u,r%u, r%u,%u,%u,%u\n",
39285c
+             AT, rA_addr, rB_addr, XMSK, YMSK, PMSK);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_INT_GER,
39285c
+                         getVSReg( rA_addr ), getVSReg( rB_addr ),
39285c
+                         AT,
39285c
+                         ( (MASKS << 9 ) | ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
+      case XVI16GER2PP:
39285c
+         PMSK = IFIELD( prefix, 12, 4);
39285c
+         XMSK = IFIELD( prefix, 4, 4);
39285c
+         YMSK = IFIELD( prefix, 0, 4);
39285c
+         DIP("pmxvi16ger2pp %u,r%u, r%u,%u,%u,%u\n",
39285c
+             AT, rA_addr, rB_addr, XMSK, YMSK, PMSK);
39285c
+         vsx_matrix_ger( vbi, MATRIX_16BIT_INT_GER,
39285c
+                         getVSReg( rA_addr ), getVSReg( rB_addr ),
39285c
+                         AT,
39285c
+                         ( (MASKS << 9 ) | ( inst_prefix << 8 ) | XO ) );
39285c
+         break;
39285c
       case XVI16GER2S:
39285c
          PMSK = IFIELD( prefix, 14, 2);
39285c
          XMSK = IFIELD( prefix, 4, 4);
39285c
@@ -36345,6 +36398,9 @@ DisResult disInstr_PPC_WRK (
39285c
              (opc2 == XVI4GER8PP)     ||       // xvi4ger8pp
39285c
              (opc2 == XVI8GER4)       ||       // xvi8ger4
39285c
              (opc2 == XVI8GER4PP)     ||       // xvi8ger4pp
39285c
+             (opc2 == XVI8GER4SPP)    ||       // xvi8ger4spp
39285c
+             (opc2 == XVI16GER2)      ||       // xvi16ger2
39285c
+             (opc2 == XVI16GER2PP)    ||       // xvi16ger2pp
39285c
              (opc2 == XVBF16GER2)     ||       // xvbf16ger2
39285c
              (opc2 == XVBF16GER2PP)   ||       // xvbf16ger2pp
39285c
              (opc2 == XVBF16GER2PN)   ||       // xvbf16ger2pn